Trait lattice_qcd_rs::ComplexField
pub trait ComplexField: SubsetOf<Self> + SupersetOf<f64> + FromPrimitive + Field<Element = Self, SimdBool = bool, Output = Self> + Neg + Clone + Send + Sync + Any + 'static + Debug + Display {
type RealField: RealField;
Show 55 methods
// Required methods
fn from_real(re: Self::RealField) -> Self;
fn real(self) -> Self::RealField;
fn imaginary(self) -> Self::RealField;
fn modulus(self) -> Self::RealField;
fn modulus_squared(self) -> Self::RealField;
fn argument(self) -> Self::RealField;
fn norm1(self) -> Self::RealField;
fn scale(self, factor: Self::RealField) -> Self;
fn unscale(self, factor: Self::RealField) -> Self;
fn floor(self) -> Self;
fn ceil(self) -> Self;
fn round(self) -> Self;
fn trunc(self) -> Self;
fn fract(self) -> Self;
fn mul_add(self, a: Self, b: Self) -> Self;
fn abs(self) -> Self::RealField;
fn hypot(self, other: Self) -> Self::RealField;
fn recip(self) -> Self;
fn conjugate(self) -> Self;
fn sin(self) -> Self;
fn cos(self) -> Self;
fn sin_cos(self) -> (Self, Self);
fn tan(self) -> Self;
fn asin(self) -> Self;
fn acos(self) -> Self;
fn atan(self) -> Self;
fn sinh(self) -> Self;
fn cosh(self) -> Self;
fn tanh(self) -> Self;
fn asinh(self) -> Self;
fn acosh(self) -> Self;
fn atanh(self) -> Self;
fn log(self, base: Self::RealField) -> Self;
fn log2(self) -> Self;
fn log10(self) -> Self;
fn ln(self) -> Self;
fn ln_1p(self) -> Self;
fn sqrt(self) -> Self;
fn exp(self) -> Self;
fn exp2(self) -> Self;
fn exp_m1(self) -> Self;
fn powi(self, n: i32) -> Self;
fn powf(self, n: Self::RealField) -> Self;
fn powc(self, n: Self) -> Self;
fn cbrt(self) -> Self;
fn is_finite(&self) -> bool;
fn try_sqrt(self) -> Option<Self>;
// Provided methods
fn to_polar(self) -> (Self::RealField, Self::RealField) { ... }
fn to_exp(self) -> (Self::RealField, Self) { ... }
fn signum(self) -> Self { ... }
fn sinh_cosh(self) -> (Self, Self) { ... }
fn sinc(self) -> Self { ... }
fn sinhc(self) -> Self { ... }
fn cosc(self) -> Self { ... }
fn coshc(self) -> Self { ... }
}
Expand description
Trait shared by all complex fields and its subfields (like real numbers).
Complex numbers are equipped with functions that are commonly used on complex numbers and reals. The results of those functions only have to be approximately equal to the actual theoretical values.
Required Associated Types§
type RealField: RealField
Required Methods§
fn modulus_squared(self) -> Self::RealField
fn modulus_squared(self) -> Self::RealField
The squared modulus of this complex number.
fn norm1(self) -> Self::RealField
fn norm1(self) -> Self::RealField
The sum of the absolute value of this complex number’s real and imaginary part.
fn floor(self) -> Self
fn ceil(self) -> Self
fn round(self) -> Self
fn trunc(self) -> Self
fn fract(self) -> Self
fn mul_add(self, a: Self, b: Self) -> Self
fn abs(self) -> Self::RealField
fn abs(self) -> Self::RealField
The absolute value of this complex number: self / self.signum()
.
This is equivalent to self.modulus()
.
fn hypot(self, other: Self) -> Self::RealField
fn hypot(self, other: Self) -> Self::RealField
Computes (self.conjugate() * self + other.conjugate() * other).sqrt()
fn recip(self) -> Self
fn conjugate(self) -> Self
fn sin(self) -> Self
fn cos(self) -> Self
fn sin_cos(self) -> (Self, Self)
fn tan(self) -> Self
fn asin(self) -> Self
fn acos(self) -> Self
fn atan(self) -> Self
fn sinh(self) -> Self
fn cosh(self) -> Self
fn tanh(self) -> Self
fn asinh(self) -> Self
fn acosh(self) -> Self
fn atanh(self) -> Self
fn log(self, base: Self::RealField) -> Self
fn log2(self) -> Self
fn log10(self) -> Self
fn ln(self) -> Self
fn ln_1p(self) -> Self
fn sqrt(self) -> Self
fn exp(self) -> Self
fn exp2(self) -> Self
fn exp_m1(self) -> Self
fn powi(self, n: i32) -> Self
fn powf(self, n: Self::RealField) -> Self
fn powc(self, n: Self) -> Self
fn cbrt(self) -> Self
fn is_finite(&self) -> bool
fn try_sqrt(self) -> Option<Self>
Provided Methods§
fn to_polar(self) -> (Self::RealField, Self::RealField)
fn to_polar(self) -> (Self::RealField, Self::RealField)
The polar form of this complex number: (modulus, arg)
fn to_exp(self) -> (Self::RealField, Self)
fn to_exp(self) -> (Self::RealField, Self)
The exponential form of this complex number: (modulus, e^{i arg})
fn signum(self) -> Self
fn signum(self) -> Self
The exponential part of this complex number: self / self.modulus()
fn sinh_cosh(self) -> (Self, Self)
fn sinc(self) -> Self
fn sinc(self) -> Self
Cardinal sine
fn sinhc(self) -> Self
fn cosc(self) -> Self
fn cosc(self) -> Self
Cardinal cos
fn coshc(self) -> Self
Implementations on Foreign Types§
§impl<N> ComplexField for Complex<N>where
N: RealField + PartialOrd<N>,
impl<N> ComplexField for Complex<N>where N: RealField + PartialOrd<N>,
§fn ln(self) -> Complex<N>
fn ln(self) -> Complex<N>
Computes the principal value of natural logarithm of self
.
This function has one branch cut:
(-∞, 0]
, continuous from above.
The branch satisfies -π ≤ arg(ln(z)) ≤ π
.
§fn sqrt(self) -> Complex<N>
fn sqrt(self) -> Complex<N>
Computes the principal value of the square root of self
.
This function has one branch cut:
(-∞, 0)
, continuous from above.
The branch satisfies -π/2 ≤ arg(sqrt(z)) ≤ π/2
.
§fn powf(self, exp: <Complex<N> as ComplexField>::RealField) -> Complex<N>
fn powf(self, exp: <Complex<N> as ComplexField>::RealField) -> Complex<N>
Raises self
to a floating point power.
§fn log(self, base: N) -> Complex<N>
fn log(self, base: N) -> Complex<N>
Returns the logarithm of self
with respect to an arbitrary base.
§fn asin(self) -> Complex<N>
fn asin(self) -> Complex<N>
Computes the principal value of the inverse sine of self
.
This function has two branch cuts:
(-∞, -1)
, continuous from above.(1, ∞)
, continuous from below.
The branch satisfies -π/2 ≤ Re(asin(z)) ≤ π/2
.
§fn acos(self) -> Complex<N>
fn acos(self) -> Complex<N>
Computes the principal value of the inverse cosine of self
.
This function has two branch cuts:
(-∞, -1)
, continuous from above.(1, ∞)
, continuous from below.
The branch satisfies 0 ≤ Re(acos(z)) ≤ π
.
§fn atan(self) -> Complex<N>
fn atan(self) -> Complex<N>
Computes the principal value of the inverse tangent of self
.
This function has two branch cuts:
(-∞i, -i]
, continuous from the left.[i, ∞i)
, continuous from the right.
The branch satisfies -π/2 ≤ Re(atan(z)) ≤ π/2
.
§fn asinh(self) -> Complex<N>
fn asinh(self) -> Complex<N>
Computes the principal value of inverse hyperbolic sine of self
.
This function has two branch cuts:
(-∞i, -i)
, continuous from the left.(i, ∞i)
, continuous from the right.
The branch satisfies -π/2 ≤ Im(asinh(z)) ≤ π/2
.
§fn acosh(self) -> Complex<N>
fn acosh(self) -> Complex<N>
Computes the principal value of inverse hyperbolic cosine of self
.
This function has one branch cut:
(-∞, 1)
, continuous from above.
The branch satisfies -π ≤ Im(acosh(z)) ≤ π
and 0 ≤ Re(acosh(z)) < ∞
.
§fn atanh(self) -> Complex<N>
fn atanh(self) -> Complex<N>
Computes the principal value of inverse hyperbolic tangent of self
.
This function has two branch cuts:
(-∞, -1]
, continuous from above.[1, ∞)
, continuous from below.
The branch satisfies -π/2 ≤ Im(atanh(z)) ≤ π/2
.