1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
//! Module for SU(2) matrix
use rand::Rng;
use rand_distr::{Distribution, Uniform};
use super::{CMatrix2, Complex, ComplexField, Real, I, ONE, ZERO};
/// First Pauli matrix.
///
/// ```textrust
/// 0 1
/// 1 0
/// ```
pub const PAULI_1: CMatrix2 = CMatrix2::new(
ZERO, ONE, // ---
ONE, ZERO,
);
/// Second Pauli matrix.
///
/// ```textrust
/// 0 -i
/// i 0
/// ```
pub const PAULI_2: CMatrix2 = CMatrix2::new(
ZERO,
Complex::new(0_f64, -1_f64),
// ---
I,
ZERO,
);
/// Third Pauli matrix.
///
/// ```textrust
/// 1 0
/// 0 -1
/// ```
pub const PAULI_3: CMatrix2 = CMatrix2::new(
ONE,
ZERO,
// ---
ZERO,
Complex::new(1_f64, 0_f64),
);
/// List of Pauli matrices, see
/// [wikipedia](https://en.wikipedia.org/w/index.php?title=Pauli_matrices&oldid=1002053121)
pub const PAULI_MATRICES: [&CMatrix2; 3] = [&PAULI_1, &PAULI_2, &PAULI_3];
/// Get a radom SU(2) matrix close the 1 or -1.
///
/// Note that it diverges from SU(2) slightly.
/// `spread_parameter` should be between between 0 and 1 both excluded to generate valid data.
/// outside this bound it will not panic but can have unexpected results.
///
/// # Example
/// /// # Example
/// ```
/// # use lattice_qcd_rs::{assert_matrix_is_su_2,su2::random_su2_close_to_unity};
/// # use rand::SeedableRng;
/// # let mut rng = rand::rngs::StdRng::seed_from_u64(0);
/// for _ in 0..10 {
/// assert_matrix_is_su_2!(
/// random_su2_close_to_unity(0.000_000_001_f64, &mut rng),
/// 0.000_000_1_f64
/// );
/// }
/// ```
/// but it will be not close to SU(2) up to [`f64::EPSILON`].
/// ```should_panic
/// # use lattice_qcd_rs::{assert_matrix_is_su_2,su2::random_su2_close_to_unity};
/// # use rand::SeedableRng;
/// # let mut rng = rand::rngs::StdRng::seed_from_u64(0);
/// assert_matrix_is_su_2!(
/// random_su2_close_to_unity(0.000_000_001_f64, &mut rng),
/// f64::EPSILON * 40_f64
/// );
/// ```
pub fn random_su2_close_to_unity<R>(spread_parameter: Real, rng: &mut R) -> CMatrix2
where
R: rand::Rng + ?Sized,
{
let d = rand::distributions::Uniform::new(-1_f64, 1_f64);
let r = na::Vector3::<Real>::from_fn(|_, _| d.sample(rng));
let x = r.try_normalize(f64::EPSILON).unwrap_or(r) * spread_parameter;
// always exists, unwrap is safe
let d_sign = rand::distributions::Bernoulli::new(0.5_f64).unwrap();
// we could have use the spread_parameter but it is safer to use the norm of x
let x0_unsigned = (1_f64 - x.norm_squared()).sqrt();
// determine the sign of x0.
let x0 = if d_sign.sample(rng) {
x0_unsigned
}
else {
-x0_unsigned
};
complex_matrix_from_vec(x0, x)
}
/// Return `x0 1 + i x_i * \sigma_i`.
///
/// # Examples
/// ```
/// use lattice_qcd_rs::{
/// assert_eq_matrix,
/// su2::{complex_matrix_from_vec, PAULI_1},
/// CMatrix2,
/// };
///
/// let m = complex_matrix_from_vec(1.0, nalgebra::Vector3::new(0_f64, 0_f64, 0_f64));
/// assert_eq_matrix!(
/// m,
/// CMatrix2::new(
/// nalgebra::Complex::new(1_f64, 0_f64),
/// nalgebra::Complex::new(0_f64, 0_f64),
/// nalgebra::Complex::new(0_f64, 0_f64),
/// nalgebra::Complex::new(1_f64, 0_f64)
/// ),
/// f64::EPSILON
/// );
///
/// let m = complex_matrix_from_vec(0.5_f64, nalgebra::Vector3::new(1_f64, 0_f64, 0_f64));
/// let m2 = CMatrix2::new(
/// nalgebra::Complex::new(1_f64, 0_f64),
/// nalgebra::Complex::new(0_f64, 0_f64),
/// nalgebra::Complex::new(0_f64, 0_f64),
/// nalgebra::Complex::new(1_f64, 0_f64),
/// ) * nalgebra::Complex::new(0.5_f64, 0_f64)
/// + PAULI_1 * nalgebra::Complex::new(0_f64, 1_f64);
/// assert_eq_matrix!(m, m2, f64::EPSILON);
/// ```
pub fn complex_matrix_from_vec(x0: Real, x: na::Vector3<Real>) -> CMatrix2 {
CMatrix2::identity() * Complex::from(x0)
+ x.iter()
.enumerate()
.map(|(i, el)| PAULI_MATRICES[i] * Complex::new(0_f64, *el))
.sum::<CMatrix2>()
}
/// Take any 2x2 matrix and project it to a matrix `X` such that `X / X.determinant().modulus().sqrt()`
/// is SU(2).
///
/// # Examples
/// see [`project_to_su2`]
/// ```
/// # use lattice_qcd_rs::{su2::{project_to_su2_unorm, random_su2},CMatrix2, Complex, assert_eq_matrix};
/// # use rand::SeedableRng;
/// # let mut rng = rand::rngs::StdRng::seed_from_u64(0);
/// let m = CMatrix2::zeros();
/// assert_eq_matrix!(project_to_su2_unorm(m), m, f64::EPSILON);
/// ```
// TODO more example
pub fn project_to_su2_unorm(m: CMatrix2) -> CMatrix2 {
m - m.adjoint() + CMatrix2::identity() * m.trace().conjugate()
}
/// Project the matrix to SU(2). Return the identity if the norm after unormalize is
/// subnormal (see[`f64::is_normal`]).
///
/// # Examples
/// ```
/// # use lattice_qcd_rs::{su2::{project_to_su2, random_su2, random_matrix_2},CMatrix2, Complex, assert_eq_matrix, assert_matrix_is_su_2};
/// # use rand::SeedableRng;
/// # let mut rng = rand::rngs::StdRng::seed_from_u64(0);
/// let m = CMatrix2::zeros();
/// assert_eq_matrix!(project_to_su2(m), CMatrix2::identity(), f64::EPSILON);
/// for _ in 0..10 {
/// let m = random_su2(&mut rng);
/// assert_eq_matrix!(project_to_su2(m * Complex::new(0.5_f64, 0_f64)), m, 4_f64 * f64::EPSILON);
/// assert_eq_matrix!(project_to_su2(m), m, 4_f64 * f64::EPSILON);
/// assert_matrix_is_su_2!(project_to_su2(m), 4_f64 * f64::EPSILON);
/// }
/// for _ in 0..10 {
/// let m = random_matrix_2(&mut rng);
/// assert_matrix_is_su_2!(project_to_su2(m), 4_f64 * f64::EPSILON)
/// }
/// ```
pub fn project_to_su2(m: CMatrix2) -> CMatrix2 {
let m = project_to_su2_unorm(m);
if m.determinant().modulus().is_normal() {
m / Complex::from(m.determinant().modulus().sqrt())
}
else {
CMatrix2::identity()
}
}
/// Get an Uniformly random SU(2) matrix.
///
/// # Example
/// ```
/// # use lattice_qcd_rs::{assert_matrix_is_su_2,su2::random_su2};
/// # use rand::SeedableRng;
/// # let mut rng = rand::rngs::StdRng::seed_from_u64(0);
/// for _ in 0..10 {
/// assert_matrix_is_su_2!(random_su2(&mut rng), 4_f64 * f64::EPSILON);
/// }
pub fn random_su2<Rng>(rng: &mut Rng) -> CMatrix2
where
Rng: rand::Rng + ?Sized,
{
let d = rand::distributions::Uniform::new(-1_f64, 1_f64);
let mut random_vector = na::Vector2::from_fn(|_, _| Complex::new(d.sample(rng), d.sample(rng)));
while !random_vector.norm().is_normal() {
random_vector = na::Vector2::from_fn(|_, _| Complex::new(d.sample(rng), d.sample(rng)));
}
let vector_normalize = random_vector / Complex::from(random_vector.norm());
CMatrix2::new(
vector_normalize[0],
vector_normalize[1],
-vector_normalize[1].conjugate(),
vector_normalize[0].conjugate(),
)
}
/// Return wether the input matrix is SU(2) up to epsilon.
///
/// # Example
/// ```
/// # use lattice_qcd_rs::{su2::{is_matrix_su2, random_su2}, CMatrix2};
/// # use rand::SeedableRng;
/// # use nalgebra::{Complex};
/// # let mut rng = rand::rngs::StdRng::seed_from_u64(0);
///
/// assert!(is_matrix_su2(&random_su2(&mut rng), 4_f64 * f64::EPSILON));
/// assert!(!is_matrix_su2(&CMatrix2::zeros(), 4_f64 * f64::EPSILON));
/// assert!(!is_matrix_su2(
/// &(random_su2(&mut rng) * Complex::new(0.5_f64, 1.7_f64)),
/// 4_f64 * f64::EPSILON
/// ));
/// ```
pub fn is_matrix_su2(m: &CMatrix2, epsilon: f64) -> bool {
((m.determinant() - Complex::from(1_f64)).modulus_squared() < epsilon)
&& ((m * m.adjoint() - CMatrix2::identity()).norm() < epsilon)
}
#[doc(hidden)]
/// Crate a random 2x2 Matrix
pub fn random_matrix_2<R: Rng + ?Sized>(rng: &mut R) -> CMatrix2 {
let d = Uniform::from(-10_f64..10_f64);
CMatrix2::from_fn(|_, _| Complex::new(d.sample(rng), d.sample(rng)))
}
#[cfg(test)]
mod test {
use rand::SeedableRng;
use rand_distr::Distribution;
use super::*;
const EPSILON: f64 = 0.000_000_001_f64;
const SEED_RNG: u64 = 0x45_78_93_f4_4a_b0_67_f0;
#[test]
fn test_u2_const() {
// test constant
for el in &PAULI_MATRICES {
assert_matrix_is_unitary_2!(*el, EPSILON);
}
}
#[test]
fn test_su2_project() {
let mut rng = rand::rngs::StdRng::seed_from_u64(SEED_RNG);
let d = rand::distributions::Uniform::new(-1_f64, 1_f64);
let m = CMatrix2::new(
Complex::from(0_f64),
Complex::from(0_f64),
Complex::from(0_f64),
Complex::from(0_f64),
);
let p = project_to_su2(m);
assert_eq_matrix!(p, CMatrix2::identity(), EPSILON);
for _ in 0_u32..100_u32 {
let r = CMatrix2::from_fn(|_, _| Complex::new(d.sample(&mut rng), d.sample(&mut rng)));
let p = project_to_su2_unorm(r);
assert!(p.trace().imaginary().abs() < EPSILON);
assert!((p * p.adjoint() - CMatrix2::identity() * p.determinant()).norm() < EPSILON);
assert_matrix_is_su_2!(p / p.determinant().sqrt(), EPSILON);
}
for _ in 0_u32..100_u32 {
let r = CMatrix2::from_fn(|_, _| Complex::new(d.sample(&mut rng), d.sample(&mut rng)));
let p = project_to_su2(r);
assert_matrix_is_su_2!(p, EPSILON);
}
}
#[test]
fn random_su2_t() {
let mut rng = rand::rngs::StdRng::seed_from_u64(SEED_RNG);
for _ in 0_u32..100_u32 {
let m = random_su2(&mut rng);
assert_matrix_is_su_2!(m, EPSILON);
}
for _ in 0_u32..100_u32 {
let m = random_su2(&mut rng);
assert!(is_matrix_su2(&m, EPSILON));
}
for _ in 0_u32..100_u32 {
let m = random_su2(&mut rng) * Complex::new(1.5_f64, 0.7_f64);
assert!(!is_matrix_su2(&m, EPSILON));
}
}
}