1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
//! Provide statistical tools
use std::ops::{Div, Mul, Sub};
use num_traits::Zero;
use rayon::prelude::*;
pub mod distribution;
pub use distribution::*;
/// Compute the mean from a [`rayon::iter::IndexedParallelIterator`].
/// It uses the power of the parallel iterator to do the computation
/// and might give better performance than [`mean`].
///
/// Alternatively there is [`mean_par_iter_val`] for parallel iterator
/// with non reference values.
/// # Example
/// ```
/// use lattice_qcd_rs::statistics::mean_par_iter;
/// use rayon::prelude::*;
///
/// let vec = vec![1_f64, 2_f64, 3_f64, 4_f64 /* ... */];
/// let mean = mean_par_iter(vec.par_iter());
/// ```
pub fn mean_par_iter<'a, It, T>(data: It) -> T
where
T: Clone
+ Div<f64, Output = T>
+ std::iter::Sum<T>
+ std::iter::Sum<It::Item>
+ Send
+ 'a
+ Sync,
It: IndexedParallelIterator<Item = &'a T>,
{
mean_par_iter_val(data.cloned())
}
/// Compute the mean from a [`rayon::iter::IndexedParallelIterator`]. If you want
/// to use reference use [`mean_par_iter`].
/// It uses the power of the parallel iterator to do the computation and is
/// particularly useful in combination of a map.
///
/// # Example
/// ```
/// use lattice_qcd_rs::statistics::mean_par_iter_val;
/// use rayon::prelude::*;
///
/// fn expensive_computation(input: &f64) -> f64 {
/// input + 1_f64
/// }
///
/// let vec = vec![1_f64, 2_f64, 3_f64, 4_f64];
/// let mean = mean_par_iter_val(vec.par_iter().map(|input| expensive_computation(input)));
/// ```
pub fn mean_par_iter_val<It, T>(data: It) -> T
where
T: Clone + Div<f64, Output = T> + std::iter::Sum<T> + std::iter::Sum<It::Item> + Send,
It: IndexedParallelIterator<Item = T>,
{
let len = data.len();
let mean: T = data.sum();
mean / len as f64
}
/// Compute the variance (squared of standard deviation) from
/// a [`rayon::iter::IndexedParallelIterator`].
///
/// The alternative for iterator that yield non reference is [`variance_par_iter_val`].
/// # Example
/// ```
/// use lattice_qcd_rs::statistics::variance_par_iter;
/// use rayon::prelude::*;
///
/// let vec = vec![1_f64, 2_f64, 3_f64, 4_f64 /* ... */];
/// let variance = variance_par_iter(vec.par_iter());
/// ```
pub fn variance_par_iter<'a, It, T>(data: It) -> T
where
T: Clone
+ Div<f64, Output = T>
+ std::iter::Sum<T>
+ std::iter::Sum<It::Item>
+ Send
+ Sync
+ 'a
+ Sub<T, Output = T>
+ Mul<T, Output = T>
+ Zero,
It: IndexedParallelIterator<Item = &'a T> + Clone,
{
variance_par_iter_val(data.cloned())
}
/// Compute the variance (squared of standard deviation) from
/// a [`rayon::iter::IndexedParallelIterator`] by value.
///
/// The alternative for the variance from a iterator that yields reference
/// is [`variance_par_iter`].
/// # Example
/// ```
/// use lattice_qcd_rs::statistics::variance_par_iter_val;
/// use rayon::prelude::*;
///
/// fn expensive_computation(input: &f64) -> f64 {
/// input * 2_f64
/// }
///
/// let vec = vec![1_f64, 2_f64, 3_f64, 4_f64];
/// let mean = variance_par_iter_val(vec.par_iter().map(|input| expensive_computation(input)));
/// ```
pub fn variance_par_iter_val<It, T>(data: It) -> T
where
T: Clone
+ Div<f64, Output = T>
+ std::iter::Sum<T>
+ std::iter::Sum<It::Item>
+ Send
+ Sub<T, Output = T>
+ Mul<T, Output = T>
+ Zero,
It: IndexedParallelIterator<Item = T> + Clone,
{
let [_, variance] = mean_and_variance_par_iter_val(data);
variance
}
/// Compute the mean and variance (squared of standard deviation) from
/// a [`rayon::iter::IndexedParallelIterator`].
/// Provides better performance than computing the mean and variation separately
/// as this method consume the iterator only once.
///
/// The alternative for iterators returning non-references
/// is [`mean_and_variance_par_iter_val`]
/// # Examples
/// see the example of [`mean_par_iter`] and [`variance_par_iter`].
pub fn mean_and_variance_par_iter<'a, It, T>(data: It) -> [T; 2]
where
T: Clone
+ Div<f64, Output = T>
+ std::iter::Sum<T>
+ std::iter::Sum<It::Item>
+ Send
+ Sync
+ 'a
+ Sub<T, Output = T>
+ Mul<T, Output = T>
+ Zero,
It: IndexedParallelIterator<Item = &'a T> + Clone,
{
mean_and_variance_par_iter_val(data.cloned())
}
/// Compute the mean and variance (squared of standard deviation) from
/// a [`rayon::iter::IndexedParallelIterator`] by value.
/// Provides better performance than computing the mean and variation separately as
/// this method consume the iterator only once.
///
/// The alternative for iterators returning references is [`mean_and_variance_par_iter`].
/// # Example
/// see the example of [`mean_par_iter_val`] and [`variance_par_iter_val`].
pub fn mean_and_variance_par_iter_val<It, T>(data: It) -> [T; 2]
where
T: Clone
+ Div<f64, Output = T>
+ std::iter::Sum<T>
+ std::iter::Sum<It::Item>
+ Send
+ Sub<T, Output = T>
+ Mul<T, Output = T>
+ Zero,
It: IndexedParallelIterator<Item = T> + Clone,
{
let len = data.len();
let (mean, mean_sqrt) = data
.map(|el| (el.clone(), el.clone() * el))
.reduce(|| (T::zero(), T::zero()), |a, b| (a.0 + b.0, a.1 + b.1));
let var = (mean_sqrt - mean.clone() * mean.clone() / (len as f64)) / (len - 1) as f64;
[mean / len as f64, var]
}
/// Computes the mean the statistical error on this value
/// a [`rayon::iter::IndexedParallelIterator`].
///
/// The statistical error is defined by `sqrt(variance / len)`.
///
/// The alternative for iterators returning non-references is [`mean_with_error_par_iter_val`].
pub fn mean_with_error_par_iter<'a, It: IndexedParallelIterator<Item = &'a f64> + Clone>(
data: It,
) -> [f64; 2] {
mean_with_error_par_iter_val(data.cloned())
}
/// Computes the mean the statistical error on this value
/// a [`rayon::iter::IndexedParallelIterator`] by value.
///
/// The statistical error is defined by `sqrt(variance / len)`.
///
/// The alternative for iterators returning references is [`mean_with_error_par_iter`]
pub fn mean_with_error_par_iter_val<It: IndexedParallelIterator<Item = f64> + Clone>(
data: It,
) -> [f64; 2] {
let len = data.len();
let [mean, variance] = mean_and_variance_par_iter_val(data);
[mean, (variance / len as f64).sqrt()]
}
/// Computes the covariance between two [`rayon::iter::IndexedParallelIterator`].
/// Returns [`None`] if the par iters are not of the same length.
///
/// The alternative for iterators returning references is [`covariance_par_iter_val`].
/// # Example
/// ```
/// use lattice_qcd_rs::statistics::covariance_par_iter;
/// use rayon::prelude::*;
///
/// let vec = vec![1_f64, 2_f64, 3_f64, 4_f64];
/// let vec_2 = vec![1_f64, 2_f64, 3_f64];
///
/// let cov = covariance_par_iter(vec.par_iter(), vec_2.par_iter());
/// assert!(cov.is_none());
///
/// let vec = vec![1_f64, 2_f64, 3_f64, 4_f64];
/// let vec_2 = vec![1_f64, 2_f64, 3_f64, 4_f64];
///
/// let cov = covariance_par_iter(vec.par_iter(), vec_2.par_iter());
/// assert_eq!(cov, Some(1.25_f64));
/// ```
pub fn covariance_par_iter<'a, It1, It2, T>(data_1: It1, data_2: It2) -> Option<T>
where
T: 'a
+ Clone
+ Div<f64, Output = T>
+ std::iter::Sum<T>
+ std::iter::Sum<It1::Item>
+ Send
+ Sync
+ Mul<T, Output = T>
+ Sub<T, Output = T>,
It1: IndexedParallelIterator<Item = &'a T> + Clone,
It2: IndexedParallelIterator<Item = &'a T> + Clone,
T: Zero,
{
covariance_par_iter_val(data_1.cloned(), data_2.cloned())
}
/// Computes the covariance between two [rayon::iter::IndexedParallelIterator] by value.
/// Returns `None` if the par iters are not of the same length.
///
/// The alternative for iterators returning references is [`covariance_par_iter`].
/// # Example
/// ```
/// use lattice_qcd_rs::statistics::covariance_par_iter_val;
/// use rayon::prelude::*;
///
/// fn expensive_computation(input: &f64) -> f64 {
/// input + 1_f64
/// }
///
/// let vec = vec![1_f64, 2_f64, 3_f64, 4_f64];
/// let vec_2 = vec![1_f64, 2_f64, 3_f64];
///
/// let cov = covariance_par_iter_val(
/// vec.par_iter().map(|input| expensive_computation(input)),
/// vec_2.par_iter().map(|input| expensive_computation(input)),
/// );
/// assert!(cov.is_none());
///
/// let vec = vec![1_f64, 1_f64, 1_f64, 1_f64];
/// let vec_2 = vec![1_f64, 1_f64, 1_f64, 1_f64];
///
/// let cov = covariance_par_iter_val(
/// vec.par_iter().map(|input| expensive_computation(input)),
/// vec_2.par_iter().map(|input| expensive_computation(input)),
/// );
/// assert_eq!(cov, Some(0_f64));
/// ```
pub fn covariance_par_iter_val<It1, It2, T>(data_1: It1, data_2: It2) -> Option<T>
where
T: Clone
+ Div<f64, Output = T>
+ std::iter::Sum<T>
+ std::iter::Sum<It1::Item>
+ Send
+ Mul<T, Output = T>
+ Sub<T, Output = T>,
It1: IndexedParallelIterator<Item = T> + Clone,
It2: IndexedParallelIterator<Item = T> + Clone,
T: Zero,
{
if data_1.len() == data_2.len() {
let len = data_1.len() as f64;
let r = data_1
.zip(data_2)
.map(|(el_1, el_2)| (el_1.clone(), el_2.clone(), el_1 * el_2))
.reduce(
|| (T::zero(), T::zero(), T::zero()),
|a, b| (a.0 + b.0, a.1 + b.1, a.2 + b.2),
);
Some((r.2 - r.0 * r.1 / len) / len)
}
else {
None
}
}
/// compute the mean from a collections
/// # Example
/// ```
/// use lattice_qcd_rs::statistics::mean;
/// use nalgebra::Complex;
///
/// mean(&[1_f64, 2_f64, 3_f64, 4_f64]);
/// let vec = vec![1_f64, 2_f64, 3_f64, 4_f64];
/// mean(&vec);
/// let vec_complex = vec![Complex::new(1_f64, 2_f64), Complex::new(-7_f64, -9_f64)];
/// mean(&vec_complex);
/// ```
#[allow(clippy::type_repetition_in_bounds)] // false positive
pub fn mean<'a, T, IntoIter>(data: IntoIter) -> T
where
T: Div<f64, Output = T> + std::iter::Sum<&'a T> + 'a,
IntoIter: IntoIterator<Item = &'a T>,
IntoIter::IntoIter: ExactSizeIterator,
{
let iter = data.into_iter();
let len = iter.len() as f64;
let mean: T = iter.sum();
mean / len
}
/// compute the variance (squared of standard deviation) from a collections
/// # Example
/// ```
/// use lattice_qcd_rs::statistics::variance;
/// use nalgebra::Complex;
///
/// variance(&[1_f64, 2_f64, 3_f64, 4_f64]);
/// let vec = vec![1_f64, 2_f64, 3_f64, 4_f64];
/// variance(&vec);
/// let vec_complex = vec![Complex::new(1_f64, 2_f64), Complex::new(-7_f64, -9_f64)];
/// variance(&vec_complex);
/// ```
#[allow(clippy::type_repetition_in_bounds)] // false positive
pub fn variance<'a, T, IntoIter>(data: IntoIter) -> T
where
T: 'a
+ Div<f64, Output = T>
+ std::iter::Sum<&'a T>
+ std::iter::Sum<T>
+ Mul<T, Output = T>
+ Clone
+ Sub<T, Output = T>,
IntoIter: IntoIterator<Item = &'a T> + Clone,
IntoIter::IntoIter: ExactSizeIterator,
{
let [_, variance] = mean_and_variance(data);
variance
}
/// Compute the mean and variance (squared of standard deviation) from a collection.
/// # Example
/// ```
/// use lattice_qcd_rs::statistics::mean_and_variance;
/// use nalgebra::Complex;
///
/// mean_and_variance(&[1_f64, 2_f64, 3_f64, 4_f64]);
/// let vec = vec![1_f64, 2_f64, 3_f64, 4_f64];
/// mean_and_variance(&vec);
/// let vec_complex = vec![Complex::new(1_f64, 2_f64), Complex::new(-7_f64, -9_f64)];
/// mean_and_variance(&vec_complex);
/// ```
#[allow(clippy::type_repetition_in_bounds)] // false positive
pub fn mean_and_variance<'a, T, IntoIter>(data: IntoIter) -> [T; 2]
where
T: 'a
+ Div<f64, Output = T>
+ std::iter::Sum<&'a T>
+ std::iter::Sum<T>
+ Mul<T, Output = T>
+ Clone
+ Sub<T, Output = T>,
IntoIter: IntoIterator<Item = &'a T> + Clone,
IntoIter::IntoIter: ExactSizeIterator,
{
// often data is just a reference so cloning it is not a big deal
let mean = mean(data.clone());
let iter = data.into_iter();
let len = iter.len();
let variance = iter
.map(|el| (el.clone() - mean.clone()) * (el.clone() - mean.clone()))
.sum::<T>()
/ (len - 1) as f64;
[mean, variance]
}
/// compute the mean the statistical error on this value a slice.
///
/// The statistical error is defined by `sqrt(variance / len)`.
pub fn mean_with_error(data: &[f64]) -> [f64; 2] {
let len = data.len();
let [mean, variance] = mean_and_variance(data);
[mean, (variance / len as f64).sqrt()]
}
/// compute the covariance between two slices.
/// Return `None` if the slices are not of the same length
/// # Example
/// ```
/// use lattice_qcd_rs::statistics::covariance;
/// use nalgebra::Complex;
///
/// let vec = vec![1_f64, 2_f64, 3_f64, 4_f64];
/// let array = [1_f64, 2_f64, 3_f64, 4_f64];
/// let cov = covariance(&array, &vec);
/// assert!(cov.is_some());
///
/// let array_complex = [Complex::new(1_f64, 2_f64), Complex::new(-7_f64, -9_f64)];
/// let vec_complex = vec![Complex::new(1_f64, 2_f64), Complex::new(-7_f64, -9_f64)];
/// let cov = covariance(&vec_complex, &array_complex);
/// assert!(cov.is_some());
///
/// assert!(covariance(&[], &[1_f64]).is_none());
/// ```
#[allow(clippy::type_repetition_in_bounds)] // false positive
pub fn covariance<'a, 'b, T, IntoIter1, IntoIter2>(
data_1: IntoIter1,
data_2: IntoIter2,
) -> Option<T>
where
T: 'a
+ 'b
+ Div<f64, Output = T>
+ for<'c> std::iter::Sum<&'c T>
+ std::iter::Sum<T>
+ Mul<T, Output = T>
+ Clone
+ Sub<T, Output = T>,
IntoIter1: IntoIterator<Item = &'a T> + Clone,
IntoIter1::IntoIter: ExactSizeIterator,
IntoIter2: IntoIterator<Item = &'b T> + Clone,
IntoIter2::IntoIter: ExactSizeIterator,
{
let iter_1 = data_1.clone().into_iter();
let iter_2 = data_2.clone().into_iter();
if iter_1.len() == iter_2.len() {
let len = iter_1.len();
let mean_prod = iter_1
.zip(iter_2)
.map(|(el1, el2)| el1.clone() * el2.clone())
.sum::<T>()
/ len as f64;
Some(mean_prod - mean(data_1) * mean(data_2))
}
else {
None
}
}
#[cfg(test)]
mod test {
use rand::SeedableRng;
use rand_distr::Distribution;
use super::*;
#[test]
fn mean_var() {
let a = [1_f64; 100];
assert_eq!(mean_and_variance_par_iter(a.par_iter()), [1_f64, 0_f64]);
assert_eq!(mean_and_variance(&a), [1_f64, 0_f64]);
assert_eq!(mean_par_iter(a.par_iter()), 1_f64);
assert_eq!(variance_par_iter(a.par_iter()), 0_f64);
assert_eq!(variance(&a), 0_f64);
assert_eq!(mean_with_error_par_iter(a.par_iter()), [1_f64, 0_f64]);
assert_eq!(mean_with_error(&a), [1_f64, 0_f64]);
let a = [0_f64, 1_f64, 0_f64, 1_f64];
assert_eq!(
mean_and_variance_par_iter(a.par_iter()),
[0.5_f64, 1_f64 / 3_f64]
);
assert_eq!(mean_and_variance(&a), [0.5_f64, 1_f64 / 3_f64]);
assert_eq!(mean_par_iter(a.par_iter()), 0.5_f64);
assert_eq!(variance_par_iter(a.par_iter()), 1_f64 / 3_f64);
assert_eq!(variance(&a), 1_f64 / 3_f64);
assert_eq!(
mean_with_error_par_iter(a.par_iter()),
[0.5_f64, (1_f64 / 3_f64 / 4_f64).sqrt()]
);
assert_eq!(
mean_with_error(&a),
[0.5_f64, (1_f64 / 3_f64 / 4_f64).sqrt()]
);
assert_eq!(covariance(&[1_f64], &[0_f64, 1_f64]), None);
assert_eq!(
covariance_par_iter([1_f64].par_iter(), [0_f64, 1_f64].par_iter()),
None
);
let mut rng = rand::rngs::StdRng::seed_from_u64(0x45_78_93_f4_4a_b0_67_f0);
let d = rand::distributions::Uniform::new(-1_f64, 1_f64);
for _ in 0_u32..100_u32 {
let mut vec = vec![];
for _ in 0_u32..100_u32 {
vec.push(d.sample(&mut rng));
}
let mut vec2 = vec![];
for _ in 0_u32..100_u32 {
vec2.push(d.sample(&mut rng));
}
assert!(
(mean_and_variance(&vec)[0] - mean_and_variance_par_iter(vec.par_iter())[0]).abs()
< 0.000_000_01_f64
);
assert!(
(mean_and_variance(&vec)[1] - mean_and_variance_par_iter(vec.par_iter())[1]).abs()
< 0.000_000_01_f64
);
assert!(
(covariance(&vec, &vec2).unwrap()
- covariance_par_iter(vec.par_iter(), vec2.par_iter()).unwrap())
.abs()
< 0.000_000_01_f64
);
}
}
}