1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
//! Module for Monte-Carlo algrorithme, see the trait [`MonteCarlo`].
//!
//! This is one of the way to carry out simulation. This work by taking a state and progressively changing it (most of the time randomly).
//!
//! # Examples
//! see [`MetropolisHastingsSweep`], [`HeatBathSweep`], [`overrelaxation`] etc...
use std::marker::PhantomData;
use na::ComplexField;
use rand_distr::Distribution;
#[cfg(feature = "serde-serialize")]
use serde::{Deserialize, Serialize};
use super::state::{LatticeState, LatticeStateDefault};
use crate::{
field::LinkMatrix,
lattice::{Direction, LatticeCyclic, LatticeLink, LatticeLinkCanonical},
Complex, Real,
};
pub mod heat_bath;
pub mod hybrid;
pub mod hybrid_monte_carlo;
pub mod metropolis_hastings;
pub mod metropolis_hastings_sweep;
pub mod overrelaxation;
pub use heat_bath::*;
pub use hybrid::*;
pub use hybrid_monte_carlo::*;
pub use metropolis_hastings::*;
pub use metropolis_hastings_sweep::*;
pub use overrelaxation::*;
/// Monte-Carlo algorithm, giving the next element in the simulation.
/// It is also a Markov chain.
///
/// # Example
/// ```
/// # use std::error::Error;
/// #
/// # fn main() -> Result<(), Box<dyn Error>> {
/// use lattice_qcd_rs::error::ImplementationError;
/// use lattice_qcd_rs::simulation::{
/// LatticeState, LatticeStateDefault, MetropolisHastingsSweep, MonteCarlo,
/// };
/// use rand::SeedableRng;
///
/// let rng = rand::rngs::StdRng::seed_from_u64(0); // change with your seed
/// let mut mh = MetropolisHastingsSweep::new(1, 0.1_f64, rng)
/// .ok_or(ImplementationError::OptionWithUnexpectedNone)?;
/// // Realistically you want more steps than 10
///
/// let mut state = LatticeStateDefault::<3>::new_cold(1_f64, 6_f64, 4)?;
/// for _ in 0..10 {
/// state = mh.next_element(state)?;
/// // or state.monte_carlo_step(&mut hmc)?;
/// // operation to track the progress or the evolution
/// }
/// // operation at the end of the simulation
/// # Ok(())
/// # }
/// ```
pub trait MonteCarlo<State, const D: usize>
where
State: LatticeState<D>,
{
/// Error returned while getting the next element.
type Error;
/// Do one Monte Carlo simulation step.
///
/// # Errors
/// Return an error if the simulation failed
fn next_element(&mut self, state: State) -> Result<State, Self::Error>;
}
/// Some times it is easier to just implement a potential next element, the rest is done automatically using an [`McWrapper`].
///
/// To get an [`MonteCarlo`] use the wrapper [`McWrapper`].
/// # Example
/// ```
/// # use std::error::Error;
/// #
/// # fn main() -> Result<(), Box<dyn Error>> {
/// use lattice_qcd_rs::error::ImplementationError;
/// use lattice_qcd_rs::simulation::{
/// LatticeState, LatticeStateDefault, McWrapper, MetropolisHastingsDiagnostic, MonteCarlo,
/// };
/// use rand::SeedableRng;
///
/// let rng = rand::rngs::StdRng::seed_from_u64(0); // change with your seed
/// let mh = MetropolisHastingsDiagnostic::new(1, 0.1_f64)
/// .ok_or(ImplementationError::OptionWithUnexpectedNone)?;
/// let mut wrapper = McWrapper::new(mh, rng);
///
/// // Realistically you want more steps than 10
///
/// let mut state = LatticeStateDefault::<3>::new_cold(1_f64, 6_f64, 4)?;
/// for _ in 0..100 {
/// state = state.monte_carlo_step(&mut wrapper)?;
/// println!(
/// "probability of acceptance during last step {}, does it accepted the change ? {}",
/// mh.prob_replace_last(),
/// mh.has_replace_last()
/// );
/// // or state.monte_carlo_step(&mut wrapper)?;
/// // operation to track the progress or the evolution
/// }
/// // operation at the end of the simulation
/// let (_, rng) = wrapper.deconstruct(); // get the rng back
/// // continue with further operation using the same rng ...
/// # Ok(())
/// # }
/// ```
pub trait MonteCarloDefault<State, const D: usize>
where
State: LatticeState<D>,
{
/// Error returned while getting the next element.
type Error;
/// Generate a radom element from the previous element (like a Markov chain).
///
/// # Errors
/// Gives an error if a potential next element cannot be generated.
fn potential_next_element<Rng>(
&mut self,
state: &State,
rng: &mut Rng,
) -> Result<State, Self::Error>
where
Rng: rand::Rng + ?Sized;
/// probability of the next element to replace the current one.
///
/// by default it is Exp(-H_old) / Exp(-H_new).
fn probability_of_replacement(old_state: &State, new_state: &State) -> Real {
(old_state.hamiltonian_links() - new_state.hamiltonian_links())
.exp()
.min(1_f64)
.max(0_f64)
}
/// Get the next element in the chain either the old state or a new one replacing it.
///
/// # Errors
/// Gives an error if a potential next element cannot be generated.
fn next_element_default<Rng>(
&mut self,
state: State,
rng: &mut Rng,
) -> Result<State, Self::Error>
where
Rng: rand::Rng + ?Sized,
{
let potential_next = self.potential_next_element(&state, rng)?;
let proba = Self::probability_of_replacement(&state, &potential_next)
.min(1_f64)
.max(0_f64);
let d = rand::distributions::Bernoulli::new(proba).unwrap();
if d.sample(rng) {
Ok(potential_next)
}
else {
Ok(state)
}
}
}
/// A wrapper used to implement [`MonteCarlo`] from a [`MonteCarloDefault`]
///
/// # Example
/// ```
/// # use std::error::Error;
/// #
/// # fn main() -> Result<(), Box<dyn Error>> {
/// use lattice_qcd_rs::error::ImplementationError;
/// use lattice_qcd_rs::simulation::{
/// LatticeState, LatticeStateDefault, McWrapper, MetropolisHastingsDiagnostic, MonteCarlo,
/// };
/// use rand::SeedableRng;
///
/// let rng = rand::rngs::StdRng::seed_from_u64(0); // change with your seed
/// let mh = MetropolisHastingsDiagnostic::new(1, 0.1_f64)
/// .ok_or(ImplementationError::OptionWithUnexpectedNone)?;
/// let mut wrapper = McWrapper::new(mh, rng);
///
/// // Realistically you want more steps than 10
///
/// let mut state = LatticeStateDefault::<3>::new_cold(1_f64, 6_f64, 4)?;
/// for _ in 0..100 {
/// state = state.monte_carlo_step(&mut wrapper)?;
/// println!(
/// "probability of acceptance during last step {}, does it accepted the change ? {}",
/// mh.prob_replace_last(),
/// mh.has_replace_last()
/// );
/// // or state.monte_carlo_step(&mut wrapper)?;
/// // operation to track the progress or the evolution
/// }
/// // operation at the end of the simulation
/// let (_, rng) = wrapper.deconstruct(); // get the rng back
/// # Ok(())
/// # }
/// ```
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
pub struct McWrapper<MCD, State, Rng, const D: usize>
where
MCD: MonteCarloDefault<State, D>,
State: LatticeState<D>,
Rng: rand::Rng,
{
mcd: MCD,
rng: Rng,
_phantom: PhantomData<State>,
}
impl<MCD, State, Rng, const D: usize> McWrapper<MCD, State, Rng, D>
where
MCD: MonteCarloDefault<State, D>,
State: LatticeState<D>,
Rng: rand::Rng,
{
getter!(
/// Get a ref to the rng.
pub const,
rng,
Rng
);
/// Create the wrapper.
pub const fn new(mcd: MCD, rng: Rng) -> Self {
Self {
mcd,
rng,
_phantom: PhantomData,
}
}
/// deconstruct the structure to get back the rng if necessary
#[allow(clippy::missing_const_for_fn)] // false positive
pub fn deconstruct(self) -> (MCD, Rng) {
(self.mcd, self.rng)
}
/// Get a reference to the [`MonteCarloDefault`] inside the wrapper.
pub const fn mcd(&self) -> &MCD {
&self.mcd
}
/// Get a mutable reference to the rng
pub fn rng_mut(&mut self) -> &mut Rng {
&mut self.rng
}
}
impl<MCD, State, Rng, const D: usize> AsRef<Rng> for McWrapper<MCD, State, Rng, D>
where
MCD: MonteCarloDefault<State, D>,
State: LatticeState<D>,
Rng: rand::Rng,
{
fn as_ref(&self) -> &Rng {
self.rng()
}
}
impl<MCD, State, Rng, const D: usize> AsMut<Rng> for McWrapper<MCD, State, Rng, D>
where
MCD: MonteCarloDefault<State, D>,
State: LatticeState<D>,
Rng: rand::Rng,
{
fn as_mut(&mut self) -> &mut Rng {
self.rng_mut()
}
}
impl<T, State, Rng, const D: usize> MonteCarlo<State, D> for McWrapper<T, State, Rng, D>
where
T: MonteCarloDefault<State, D>,
State: LatticeState<D>,
Rng: rand::Rng,
{
type Error = T::Error;
fn next_element(&mut self, state: State) -> Result<State, Self::Error> {
self.mcd.next_element_default(state, &mut self.rng)
}
}
impl<MCD, State, Rng, const D: usize> Default for McWrapper<MCD, State, Rng, D>
where
MCD: MonteCarloDefault<State, D> + Default,
State: LatticeState<D>,
Rng: rand::Rng + Default,
{
fn default() -> Self {
Self::new(MCD::default(), Rng::default())
}
}
impl<MCD, State, Rng, const D: usize> std::fmt::Display for McWrapper<MCD, State, Rng, D>
where
MCD: MonteCarloDefault<State, D> + std::fmt::Display,
State: LatticeState<D>,
Rng: rand::Rng + std::fmt::Display,
{
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(
f,
"Monte Carlo wrapper method {} with rng {}",
self.mcd(),
self.rng(),
)
}
}
/// Get the delta of energy by changing a link.
#[inline]
fn delta_s_old_new_cmp<const D: usize>(
link_matrix: &LinkMatrix,
lattice: &LatticeCyclic<D>,
link: &LatticeLinkCanonical<D>,
new_link: &na::Matrix3<Complex>,
beta: Real,
old_matrix: &na::Matrix3<Complex>,
) -> Real {
let a = staple(link_matrix, lattice, link);
-((new_link - old_matrix) * a).trace().real() * beta / LatticeStateDefault::<D>::CA
}
// TODO move in state
/// return the staple
#[inline]
fn staple<const D: usize>(
link_matrix: &LinkMatrix,
lattice: &LatticeCyclic<D>,
link: &LatticeLinkCanonical<D>,
) -> na::Matrix3<Complex> {
let dir_j = link.dir();
Direction::<D>::positive_directions()
.iter()
.filter(|dir_i| *dir_i != dir_j)
.map(|dir_i| {
let el_1 = link_matrix
.sij(link.pos(), dir_j, dir_i, lattice)
.unwrap()
.adjoint();
let l_1 = LatticeLink::new(lattice.add_point_direction(*link.pos(), dir_j), -dir_i);
let u1 = link_matrix.matrix(&l_1, lattice).unwrap();
let l_2 = LatticeLink::new(lattice.add_point_direction(*link.pos(), &-dir_i), *dir_j);
let u2 = link_matrix.matrix(&l_2, lattice).unwrap().adjoint();
let l_3 = LatticeLink::new(lattice.add_point_direction(*link.pos(), &-dir_i), *dir_i);
let u3 = link_matrix.matrix(&l_3, lattice).unwrap();
el_1 + u1 * u2 * u3
})
.sum()
}