1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
//! Numerical integrators to carry out simulations.
//!
//! See [`SymplecticIntegrator`]. The simulations are done on [`LatticeStateWithEField`]
//! It also require a notion of [`SimulationStateSynchronous`]
//! and [`SimulationStateLeapFrog`].
//!
//! Even thought it is effortless to implement both [`SimulationStateSynchronous`]
//! and [`SimulationStateLeapFrog`].
//! I advice against it and implement only [`SimulationStateSynchronous`] and
//! use [`super::simulation::SimulationStateLeap`]
//! for leap frog states as it gives a compile time check that you did not forget
//! doing a half steps.
//!
//! This library gives two implementations of [`SymplecticIntegrator`]:
//! [`SymplecticEuler`] and [`SymplecticEulerRayon`].
//! I would advice using [`SymplecticEulerRayon`] if you do not mind the little
//! more memory it uses.
//! # Example
//! let us create a basic random state and let us simulate.
//! ```
//! # use std::error::Error;
//! #
//! # fn main() -> Result<(), Box<dyn Error>> {
//! use lattice_qcd_rs::integrator::{SymplecticEuler, SymplecticIntegrator};
//! use lattice_qcd_rs::simulation::{
//! LatticeStateDefault, LatticeStateEFSyncDefault, LatticeStateWithEField,
//! };
//! use rand::SeedableRng;
//!
//! let mut rng = rand::rngs::StdRng::seed_from_u64(0); // change with your seed
//! let state1 = LatticeStateEFSyncDefault::new_random_e_state(
//! LatticeStateDefault::<3>::new_determinist(100_f64, 1_f64, 4, &mut rng)?,
//! &mut rng,
//! );
//! let integrator = SymplecticEuler::default();
//! let state2 = integrator.integrate_sync_sync(&state1, 0.000_1_f64)?;
//! let state3 = integrator.integrate_sync_sync(&state2, 0.000_1_f64)?;
//! # Ok(())
//! # }
//! ```
//! Let us then compute and compare the Hamiltonian.
//! ```
//! # use std::error::Error;
//! #
//! # fn main() -> Result<(), Box<dyn Error>> {
//! # use lattice_qcd_rs::integrator::{SymplecticEuler, SymplecticIntegrator};
//! # use lattice_qcd_rs::simulation::{
//! # LatticeStateDefault, LatticeStateWithEField, LatticeStateEFSyncDefault,
//! # };
//! # use rand::SeedableRng;
//! #
//! # let mut rng = rand::rngs::StdRng::seed_from_u64(0); // change with your seed
//! # let state1 = LatticeStateEFSyncDefault::new_random_e_state(
//! # LatticeStateDefault::<3>::new_determinist(100_f64, 1_f64, 4, &mut rng)?,
//! # &mut rng,
//! # );
//! # let integrator = SymplecticEuler::default();
//! # let state2 = integrator.integrate_sync_sync(&state1, 0.000_1_f64)?;
//! # let state3 = integrator.integrate_sync_sync(&state2, 0.000_1_f64)?;
//! let h = state1.hamiltonian_total();
//! let h2 = state3.hamiltonian_total();
//! println!("The error on the Hamiltonian is {}", h - h2);
//! # Ok(())
//! # }
//! ```
//! See [`SimulationStateSynchronous`] for more convenient methods.
use na::SVector;
use super::{
field::{EField, LinkMatrix, Su3Adjoint},
lattice::{LatticeCyclic, LatticeLink, LatticeLinkCanonical, LatticePoint},
simulation::{LatticeStateWithEField, SimulationStateLeapFrog, SimulationStateSynchronous},
CMatrix3, Complex, Real,
};
pub mod symplectic_euler;
pub mod symplectic_euler_rayon;
pub use symplectic_euler::SymplecticEuler;
pub use symplectic_euler_rayon::SymplecticEulerRayon;
/// Define an symplectic numerical integrator
///
/// The integrator evolve the state in time.
///
/// The integrator should be capable of switching between Sync state
/// (q (or link matrices) at time T , p (or e_field) at time T )
/// and leap frog (a at time T, p at time T + 1/2)
///
/// # Example
/// For an example see the module level documentation [`super::integrator`].
pub trait SymplecticIntegrator<StateSync, StateLeap, const D: usize>
where
StateSync: SimulationStateSynchronous<D>,
StateLeap: SimulationStateLeapFrog<D>,
{
/// Type of error returned by the Integrator.
type Error;
/// Integrate a sync state to a sync state by advancing the link matrices and the electrical field simultaneously.
///
/// # Example
/// see the module level documentation [`super::integrator`].
///
/// # Errors
/// Return an error if the integration encounter a problem
fn integrate_sync_sync(&self, l: &StateSync, delta_t: Real) -> Result<StateSync, Self::Error>;
/// Integrate a leap state to a leap state using leap frog algorithm.
///
///
/// # Example
/// ```
/// # use std::error::Error;
/// #
/// # fn main() -> Result<(), Box<dyn Error>> {
/// use lattice_qcd_rs::integrator::{SymplecticEulerRayon, SymplecticIntegrator};
/// use lattice_qcd_rs::simulation::{
/// LatticeStateDefault, LatticeStateEFSyncDefault, LatticeStateWithEField,
/// };
/// use rand::SeedableRng;
///
/// let mut rng = rand::rngs::StdRng::seed_from_u64(0); // change with your seed
/// let state = LatticeStateEFSyncDefault::new_random_e_state(
/// LatticeStateDefault::<3>::new_determinist(1_f64, 2_f64, 4, &mut rng)?,
/// &mut rng,
/// );
/// let h = state.hamiltonian_total();
/// let integrator = SymplecticEulerRayon::default();
/// let mut leap_frog = integrator.integrate_sync_leap(&state, 0.000_001_f64)?;
/// drop(state);
/// for _ in 0..2 {
/// // Realistically you would want more steps
/// leap_frog = integrator.integrate_leap_leap(&leap_frog, 0.000_001_f64)?;
/// }
/// let state = integrator.integrate_leap_sync(&leap_frog, 0.000_001_f64)?;
/// let h2 = state.hamiltonian_total();
///
/// println!("The error on the Hamiltonian is {}", h - h2);
/// # Ok(())
/// # }
/// ```
///
/// # Errors
/// Return an error if the integration encounter a problem
fn integrate_leap_leap(&self, l: &StateLeap, delta_t: Real) -> Result<StateLeap, Self::Error>;
/// Integrate a sync state to a leap state by doing a half step for the conjugate momenta.
///
/// # Example
/// see [`SymplecticIntegrator::integrate_leap_leap`]
///
/// # Errors
/// Return an error if the integration encounter a problem
fn integrate_sync_leap(&self, l: &StateSync, delta_t: Real) -> Result<StateLeap, Self::Error>;
/// Integrate a leap state to a sync state by finishing doing a step for the position and finishing
/// the half step for the conjugate momenta.
///
/// # Example
/// see [`SymplecticIntegrator::integrate_leap_leap`]
///
/// # Errors
/// Return an error if the integration encounter a problem
fn integrate_leap_sync(&self, l: &StateLeap, delta_t: Real) -> Result<StateSync, Self::Error>;
/// Integrate a Sync state by going to leap and then back to sync.
/// This is the symplectic method of integration, which should conserve approximately the hamiltonian
///
/// Note that you might want to override this method as it can save you from a clone.
///
/// # Example
/// ```
/// # use std::error::Error;
/// #
/// # fn main() -> Result<(), Box<dyn Error>> {
/// use lattice_qcd_rs::integrator::{SymplecticEulerRayon, SymplecticIntegrator};
/// use lattice_qcd_rs::simulation::{
/// LatticeStateDefault, LatticeStateEFSyncDefault, LatticeStateWithEField,
/// };
/// use rand::SeedableRng;
///
/// let mut rng = rand::rngs::StdRng::seed_from_u64(0); // change with your seed
/// let mut state = LatticeStateEFSyncDefault::new_random_e_state(
/// LatticeStateDefault::<3>::new_determinist(1_f64, 2_f64, 4, &mut rng)?,
/// &mut rng,
/// );
/// let h = state.hamiltonian_total();
///
/// let integrator = SymplecticEulerRayon::default();
/// for _ in 0..1 {
/// // Realistically you would want more steps
/// state = integrator.integrate_symplectic(&state, 0.000_001_f64)?;
/// }
/// let h2 = state.hamiltonian_total();
///
/// println!("The error on the Hamiltonian is {}", h - h2);
/// # Ok(())
/// # }
/// ```
///
/// # Errors
/// Return an error if the integration encounter a problem
fn integrate_symplectic(&self, l: &StateSync, delta_t: Real) -> Result<StateSync, Self::Error> {
self.integrate_leap_sync(&self.integrate_sync_leap(l, delta_t)?, delta_t)
}
}
/// function for link integration.
/// This must succeed as it is use while doing parallel computation. Returning a Option is undesirable.
/// As it can panic if a out of bound link is passed it needs to stay private.
///
/// # Panic
/// It panics if a out of bound link is passed.
fn integrate_link<State, const D: usize>(
link: &LatticeLinkCanonical<D>,
link_matrix: &LinkMatrix,
e_field: &EField<D>,
lattice: &LatticeCyclic<D>,
delta_t: Real,
) -> CMatrix3
where
State: LatticeStateWithEField<D>,
{
let canonical_link = LatticeLink::from(*link);
let initial_value = link_matrix
.matrix(&canonical_link, lattice)
.expect("Link matrix not found");
initial_value
+ State::derivative_u(link, link_matrix, e_field, lattice).expect("Derivative not found")
* Complex::from(delta_t)
}
/// function for "Electrical" field integration.
/// Like [`integrate_link`] this must succeed.
///
/// # Panics
/// It panics if a out of bound link is passed.
fn integrate_efield<State, const D: usize>(
point: &LatticePoint<D>,
link_matrix: &LinkMatrix,
e_field: &EField<D>,
lattice: &LatticeCyclic<D>,
delta_t: Real,
) -> SVector<Su3Adjoint, D>
where
State: LatticeStateWithEField<D>,
{
let initial_value = e_field.e_vec(point, lattice).expect("E Field not found");
let deriv =
State::derivative_e(point, link_matrix, e_field, lattice).expect("Derivative not found");
initial_value + deriv.map(|el| el * delta_t)
}