1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
//! Represent the fields on the lattice.
use std::iter::{FromIterator, FusedIterator};
use std::{
ops::{Add, AddAssign, Div, DivAssign, Index, IndexMut, Mul, MulAssign, Neg, Sub, SubAssign},
vec::Vec,
};
use na::{ComplexField, Matrix3, SVector};
use rayon::iter::FromParallelIterator;
use rayon::prelude::*;
#[cfg(feature = "serde-serialize")]
use serde::{Deserialize, Serialize};
use super::{
lattice::{Direction, LatticeCyclic, LatticeElementToIndex, LatticeLink, LatticePoint},
su3,
su3::GENERATORS,
thread::{run_pool_parallel_vec_with_initializations_mutable, ThreadError},
utils::levi_civita,
CMatrix3, Complex, Real, Vector8, I,
};
/// Adjoint representation of SU(3), it is su(3) (i.e. the lie algebra).
/// See [`su3::GENERATORS`] to view the order of generators.
/// Note that the generators are normalize such that `Tr[T^a T^b] = \delta^{ab} / 2`
#[derive(Debug, Copy, Clone, PartialEq)]
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
pub struct Su3Adjoint {
data: Vector8<Real>,
}
#[allow(clippy::len_without_is_empty)]
impl Su3Adjoint {
/// create a new Su3Adjoint representation where `M = M^a T^a`, where `T` are generators given in [`su3::GENERATORS`].
/// # Example
/// ```
/// use lattice_qcd_rs::field::Su3Adjoint;
/// use nalgebra::SVector;
///
/// let su3 = Su3Adjoint::new(SVector::<f64, 8>::from_element(1_f64));
/// ```
pub const fn new(data: Vector8<Real>) -> Self {
Self { data }
}
/// create a new Su3Adjoint representation where `M = M^a T^a`, where `T` are generators given in [`su3::GENERATORS`].
/// # Example
/// ```
/// # use lattice_qcd_rs::field::Su3Adjoint;
/// let su3 = Su3Adjoint::new_from_array([0_f64; 8]);
/// ```
pub fn new_from_array(data: [Real; 8]) -> Self {
Su3Adjoint::new(Vector8::from(data))
}
/// get the data inside the Su3Adjoint.
pub const fn data(&self) -> &Vector8<Real> {
&self.data
}
/// Get the su3 adjoint as a [`Vector8`].
///
/// # Example
/// ```
/// # use lattice_qcd_rs::field::Su3Adjoint;
/// #
/// # let adj = Su3Adjoint::default();
/// let max = adj.as_vector().max();
/// let norm = adj.as_ref().norm();
/// ```
pub const fn as_vector(&self) -> &Vector8<Real> {
self.data()
}
/// Get the su3 adjoint as mut ref to a [`Vector8`].
///
/// # Example
/// ```
/// # use lattice_qcd_rs::{field::Su3Adjoint, Vector8};
/// #
/// let mut adj = Su3Adjoint::default(); // filled with 0.
/// adj.as_vector_mut().apply(|el| *el += 1_f64);
/// assert_eq!(adj.as_vector(), &Vector8::from_element(1_f64));
///
/// adj.as_mut().set_magnitude(1_f64);
///
/// let mut v = Vector8::from_element(1_f64);
/// v.set_magnitude(1_f64);
///
/// assert_eq!(adj.as_vector(), &v);
/// ```
pub fn as_vector_mut(&mut self) -> &mut Vector8<Real> {
self.data_mut()
}
/// Returns the su(3) (Lie algebra) matrix.
///
/// # Example
/// ```
/// # use lattice_qcd_rs::{field::Su3Adjoint};
/// let su3 = Su3Adjoint::new_from_array([1_f64, 0_f64, 0_f64, 0_f64, 0_f64, 0_f64, 0_f64, 0_f64]);
/// assert_eq!(su3.to_matrix(), *lattice_qcd_rs::su3::GENERATORS[0]);
/// ```
// TODO self non consumed ?? passé en &self ? TODO bench
pub fn to_matrix(self) -> Matrix3<na::Complex<Real>> {
self.data
.into_iter()
.enumerate()
.map(|(pos, el)| *GENERATORS[pos] * na::Complex::<Real>::from(el))
.sum()
}
/// Return the SU(3) matrix associated with this generator.
/// Note that the function consume self.
///
/// # Example
/// ```
/// # use lattice_qcd_rs::{field::Su3Adjoint};
/// let su3 = Su3Adjoint::new_from_array([1_f64, 0_f64, 0_f64, 0_f64, 0_f64, 0_f64, 0_f64, 0_f64]);
/// assert_eq!(su3.to_su3().determinant(), nalgebra::Complex::from(1_f64));
/// ```
pub fn to_su3(self) -> Matrix3<na::Complex<Real>> {
// NOTE: should it consume ? the user can manually clone and there is use because
// where the value is not necessary anymore.
su3::su3_exp_i(self)
}
/// Return exp( T^a v^a) where v is self.
/// Note that the function consume self.
pub fn exp(self) -> Matrix3<na::Complex<Real>> {
su3::su3_exp_r(self)
}
/// Create a new random SU3 adjoint.
///
/// # Example
/// ```
/// use lattice_qcd_rs::field::Su3Adjoint;
///
/// let mut rng = rand::thread_rng();
/// let distribution = rand::distributions::Uniform::from(-1_f64..1_f64);
/// let su3 = Su3Adjoint::random(&mut rng, &distribution);
/// ```
pub fn random<Rng>(rng: &mut Rng, d: &impl rand_distr::Distribution<Real>) -> Self
where
Rng: rand::Rng + ?Sized,
{
Self {
data: Vector8::<Real>::from_fn(|_, _| d.sample(rng)),
}
}
/// Returns the trace squared `Tr(X^2)`.
///
/// It is more accurate and faster than computing
/// ```
/// # use lattice_qcd_rs::field::Su3Adjoint;
/// # use lattice_qcd_rs::ComplexField;
/// # let m = Su3Adjoint::default();
/// (m.to_matrix() * m.to_matrix()).trace().real();
/// ```
#[inline]
pub fn trace_squared(&self) -> Real {
// TODO investigate.
self.data.iter().map(|el| el * el).sum::<Real>() / 2_f64
}
/// Return the t coeff `t = - 1/2 * Tr(X^2)`.
/// If you are looking for the trace square use [Self::trace_squared] instead.
///
/// It is used for [`su3::su3_exp_i`].
///
/// # Example
/// ```
/// # use lattice_qcd_rs::field::Su3Adjoint;
/// let su3 = Su3Adjoint::from([1_f64; 8]);
/// let m = su3.to_matrix();
/// assert_eq!(
/// nalgebra::Complex::new(su3.t(), 0_f64),
/// -nalgebra::Complex::from(0.5_f64) * (m * m).trace()
/// );
/// ```
#[inline]
pub fn t(&self) -> Real {
-0.5_f64 * self.trace_squared()
}
/// Return the t coeff `d = i * det(X)`.
/// Used for [`su3::su3_exp_i`].
///
/// # Example
/// ```
/// # use lattice_qcd_rs::field::Su3Adjoint;
/// let su3 = Su3Adjoint::from([1_f64; 8]);
/// let m = su3.to_matrix();
/// assert_eq!(
/// su3.d(),
/// nalgebra::Complex::new(0_f64, 1_f64) * m.determinant()
/// );
/// ```
#[inline]
pub fn d(&self) -> na::Complex<Real> {
self.to_matrix().determinant() * I
}
/// Return the number of data. This number is 8
/// ```
/// # use lattice_qcd_rs::field::Su3Adjoint;
/// # let su3 = Su3Adjoint::new(nalgebra::SVector::<f64, 8>::zeros());
/// assert_eq!(su3.len(), 8);
/// ```
#[allow(clippy::unused_self)]
pub fn len(&self) -> usize {
self.data.len()
//8
}
/// Return the number of data. This number is 8
/// ```
/// # use lattice_qcd_rs::field::Su3Adjoint;
/// let su3 = Su3Adjoint::new(nalgebra::SVector::<f64, 8>::zeros());
/// assert_eq!(Su3Adjoint::len_const(), su3.len());
/// ```
pub const fn len_const() -> usize {
8
}
/// Get an iterator over the elements.
///
/// # Example
/// ```
/// # use lattice_qcd_rs::field::Su3Adjoint;
/// # let adj = Su3Adjoint::default();
/// let sum_abs = adj.iter().map(|el| el.abs()).sum::<f64>();
/// ```
pub fn iter(&self) -> impl Iterator<Item = &Real> + ExactSizeIterator + FusedIterator {
self.data.iter()
}
/// Get an iterator over the mutable ref of elements.
///
/// # Example
/// ```
/// # use lattice_qcd_rs::field::Su3Adjoint;
/// # let mut adj = Su3Adjoint::default();
/// adj.iter_mut().for_each(|el| *el = *el / 2_f64);
/// ```
pub fn iter_mut(
&mut self,
) -> impl Iterator<Item = &mut Real> + ExactSizeIterator + FusedIterator {
self.data.iter_mut()
}
/// Get a mutable reference over the data.
pub fn data_mut(&mut self) -> &mut Vector8<Real> {
&mut self.data
}
}
impl AsRef<Vector8<f64>> for Su3Adjoint {
fn as_ref(&self) -> &Vector8<f64> {
self.as_vector()
}
}
impl AsMut<Vector8<f64>> for Su3Adjoint {
fn as_mut(&mut self) -> &mut Vector8<f64> {
self.as_vector_mut()
}
}
impl<'a> IntoIterator for &'a Su3Adjoint {
type IntoIter = <&'a Vector8<Real> as IntoIterator>::IntoIter;
type Item = &'a Real;
fn into_iter(self) -> Self::IntoIter {
self.data.iter()
}
}
impl<'a> IntoIterator for &'a mut Su3Adjoint {
type IntoIter = <&'a mut Vector8<Real> as IntoIterator>::IntoIter;
type Item = &'a mut Real;
fn into_iter(self) -> Self::IntoIter {
self.data.iter_mut()
}
}
impl AddAssign for Su3Adjoint {
fn add_assign(&mut self, other: Self) {
self.data += other.data();
}
}
impl Add<Su3Adjoint> for Su3Adjoint {
type Output = Self;
fn add(mut self, rhs: Self) -> Self::Output {
self += rhs;
self
}
}
impl Add<&Su3Adjoint> for Su3Adjoint {
type Output = Self;
fn add(self, rhs: &Self) -> Self::Output {
self + *rhs
}
}
impl Add<Su3Adjoint> for &Su3Adjoint {
type Output = Su3Adjoint;
fn add(self, rhs: Su3Adjoint) -> Self::Output {
rhs + self
}
}
impl Add<&Su3Adjoint> for &Su3Adjoint {
type Output = Su3Adjoint;
fn add(self, rhs: &Su3Adjoint) -> Self::Output {
self + *rhs
}
}
impl MulAssign<f64> for Su3Adjoint {
fn mul_assign(&mut self, rhs: f64) {
self.data *= rhs;
}
}
impl Mul<Real> for Su3Adjoint {
type Output = Self;
fn mul(mut self, rhs: Real) -> Self::Output {
self *= rhs;
self
}
}
impl Mul<&Real> for Su3Adjoint {
type Output = Self;
fn mul(self, rhs: &Real) -> Self::Output {
self * (*rhs)
}
}
impl Mul<Real> for &Su3Adjoint {
type Output = Su3Adjoint;
fn mul(self, rhs: Real) -> Self::Output {
*self * rhs
}
}
impl Mul<&Real> for &Su3Adjoint {
type Output = Su3Adjoint;
fn mul(self, rhs: &Real) -> Self::Output {
*self * rhs
}
}
impl Mul<Su3Adjoint> for Real {
type Output = Su3Adjoint;
fn mul(self, rhs: Su3Adjoint) -> Self::Output {
rhs * self
}
}
impl Mul<&Su3Adjoint> for Real {
type Output = Su3Adjoint;
fn mul(self, rhs: &Su3Adjoint) -> Self::Output {
rhs * self
}
}
impl Mul<Su3Adjoint> for &Real {
type Output = Su3Adjoint;
fn mul(self, rhs: Su3Adjoint) -> Self::Output {
rhs * self
}
}
impl Mul<&Su3Adjoint> for &Real {
type Output = Su3Adjoint;
fn mul(self, rhs: &Su3Adjoint) -> Self::Output {
rhs * self
}
}
impl DivAssign<f64> for Su3Adjoint {
fn div_assign(&mut self, rhs: f64) {
self.data /= rhs;
}
}
impl DivAssign<&f64> for Su3Adjoint {
fn div_assign(&mut self, rhs: &f64) {
self.data /= *rhs;
}
}
impl Div<Real> for Su3Adjoint {
type Output = Self;
fn div(mut self, rhs: Real) -> Self::Output {
self /= rhs;
self
}
}
impl Div<&Real> for Su3Adjoint {
type Output = Self;
fn div(self, rhs: &Real) -> Self::Output {
self / (*rhs)
}
}
impl Div<Real> for &Su3Adjoint {
type Output = Su3Adjoint;
fn div(self, rhs: Real) -> Self::Output {
*self / rhs
}
}
impl Div<&Real> for &Su3Adjoint {
type Output = Su3Adjoint;
fn div(self, rhs: &Real) -> Self::Output {
*self / rhs
}
}
impl SubAssign for Su3Adjoint {
fn sub_assign(&mut self, other: Self) {
self.data -= other.data();
}
}
impl Sub<Su3Adjoint> for Su3Adjoint {
type Output = Self;
fn sub(mut self, rhs: Self) -> Self::Output {
self -= rhs;
self
}
}
impl Sub<&Su3Adjoint> for Su3Adjoint {
type Output = Self;
fn sub(self, rhs: &Self) -> Self::Output {
self - *rhs
}
}
impl Sub<Su3Adjoint> for &Su3Adjoint {
type Output = Su3Adjoint;
fn sub(self, rhs: Su3Adjoint) -> Self::Output {
rhs - self
}
}
impl Sub<&Su3Adjoint> for &Su3Adjoint {
type Output = Su3Adjoint;
fn sub(self, rhs: &Su3Adjoint) -> Self::Output {
*self - rhs
}
}
impl Neg for Su3Adjoint {
type Output = Self;
fn neg(self) -> Self::Output {
Su3Adjoint::new(-self.data)
}
}
impl Neg for &Su3Adjoint {
type Output = Su3Adjoint;
fn neg(self) -> Self::Output {
Su3Adjoint::new(-self.data())
}
}
/// Return the representation for the zero matrix.
impl Default for Su3Adjoint {
/// Return the representation for the zero matrix.
///
/// # Example
/// ```
/// # use lattice_qcd_rs::field::Su3Adjoint;
/// assert_eq!(
/// Su3Adjoint::default(),
/// Su3Adjoint::new_from_array([0_f64; 8])
/// );
/// ```
fn default() -> Self {
Su3Adjoint::new(Vector8::from_element(0_f64))
}
}
impl std::fmt::Display for Su3Adjoint {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{}", self.to_matrix())
}
}
impl Index<usize> for Su3Adjoint {
type Output = Real;
/// Get the element at position `pos`.
///
/// # Panic
/// Panics if the position is out of bound (greater or equal to 8).
/// ```should_panic
/// # use lattice_qcd_rs::field::Su3Adjoint;
/// let su3 = Su3Adjoint::new_from_array([0_f64; 8]);
/// let _ = su3[8];
/// ```
fn index(&self, pos: usize) -> &Self::Output {
&self.data[pos]
}
}
impl IndexMut<usize> for Su3Adjoint {
/// Get the element at position `pos`.
///
/// # Panic
/// Panics if the position is out of bound (greater or equal to 8).
/// ```should_panic
/// # use lattice_qcd_rs::field::Su3Adjoint;
/// let mut su3 = Su3Adjoint::new_from_array([0_f64; 8]);
/// su3[8] += 1_f64;
/// ```
fn index_mut(&mut self, pos: usize) -> &mut Self::Output {
&mut self.data[pos]
}
}
impl From<Vector8<Real>> for Su3Adjoint {
fn from(v: Vector8<Real>) -> Self {
Su3Adjoint::new(v)
}
}
impl From<Su3Adjoint> for Vector8<Real> {
fn from(v: Su3Adjoint) -> Self {
v.data
}
}
impl From<&Su3Adjoint> for Vector8<Real> {
fn from(v: &Su3Adjoint) -> Self {
v.data
}
}
impl From<[Real; 8]> for Su3Adjoint {
fn from(v: [Real; 8]) -> Self {
Su3Adjoint::new_from_array(v)
}
}
/// Represents the link matrices
// TODO more doc
#[derive(Debug, PartialEq, Clone)]
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
pub struct LinkMatrix {
data: Vec<Matrix3<na::Complex<Real>>>,
}
impl LinkMatrix {
/// Create a new link matrix field from preexisting data.
pub const fn new(data: Vec<Matrix3<na::Complex<Real>>>) -> Self {
Self { data }
}
/// Get the raw data.
pub const fn data(&self) -> &Vec<Matrix3<na::Complex<Real>>> {
&self.data
}
/// Get a mutable reference to the data
pub fn data_mut(&mut self) -> &mut Vec<Matrix3<na::Complex<Real>>> {
&mut self.data
}
/// Get the link_matrix as a [`Vec`].
pub const fn as_vec(&self) -> &Vec<Matrix3<na::Complex<Real>>> {
self.data()
}
/// Get the link_matrix as a mutable [`Vec`].
pub fn as_vec_mut(&mut self) -> &mut Vec<Matrix3<na::Complex<Real>>> {
self.data_mut()
}
/// Get the link_matrix as a slice.
pub fn as_slice(&self) -> &[Matrix3<na::Complex<Real>>] {
self.data()
}
/// Get the link_matrix as a mut ref to a slice
pub fn as_slice_mut(&mut self) -> &mut [Matrix3<na::Complex<Real>>] {
&mut self.data
}
/// Single threaded generation with a given random number generator.
/// useful to produce a deterministic set of data but slower than
/// [`LinkMatrix::new_random_threaded`].
///
/// # Example
/// ```
/// use lattice_qcd_rs::{field::LinkMatrix, lattice::LatticeCyclic};
/// use rand::{rngs::StdRng, SeedableRng};
/// # use std::error::Error;
///
/// # fn main() -> Result<(), Box<dyn Error>> {
/// let mut rng_1 = StdRng::seed_from_u64(0);
/// let mut rng_2 = StdRng::seed_from_u64(0);
/// // They have the same seed and should generate the same numbers
/// let lattice = LatticeCyclic::<4>::new(1_f64, 4)?;
/// assert_eq!(
/// LinkMatrix::new_determinist(&lattice, &mut rng_1),
/// LinkMatrix::new_determinist(&lattice, &mut rng_2)
/// );
/// # Ok(())
/// # }
/// ```
pub fn new_determinist<Rng: rand::Rng + ?Sized, const D: usize>(
l: &LatticeCyclic<D>,
rng: &mut Rng,
) -> Self {
// l.get_links_space().map(|_| Su3Adjoint::random(rng, d).to_su3()).collect()
// using a for loop improves performance. ( probably because the vector is pre allocated).
let mut data = Vec::with_capacity(l.number_of_canonical_links_space());
for _ in l.get_links() {
// the iterator *should* be in order
let matrix = su3::random_su3(rng);
data.push(matrix);
}
Self { data }
}
/// Multi threaded generation of random data. Due to the non deterministic way threads
/// operate a set cannot be reduced easily. If you want deterministic
/// generation you can use [`LinkMatrix::new_random_threaded`].
///
/// # Example
/// ```
/// use lattice_qcd_rs::{field::LinkMatrix, lattice::LatticeCyclic};
/// # use std::error::Error;
///
/// # fn main() -> Result<(), Box<dyn Error>> {
/// let lattice = LatticeCyclic::<3>::new(1_f64, 4)?;
/// let links = LinkMatrix::new_random_threaded(&lattice, 4)?;
/// assert!(!links.is_empty());
/// # Ok(())
/// # }
/// ```
///
/// # Errors
/// Returns [`ThreadError::ThreadNumberIncorrect`] if `number_of_thread` is 0.
pub fn new_random_threaded<const D: usize>(
l: &LatticeCyclic<D>,
number_of_thread: usize,
) -> Result<Self, ThreadError> {
if number_of_thread == 0 {
return Err(ThreadError::ThreadNumberIncorrect);
}
else if number_of_thread == 1 {
let mut rng = rand::thread_rng();
return Ok(LinkMatrix::new_determinist(l, &mut rng));
}
let data = run_pool_parallel_vec_with_initializations_mutable(
l.get_links(),
&(),
&|rng, _, _| su3::random_su3(rng),
rand::thread_rng,
number_of_thread,
l.number_of_canonical_links_space(),
l,
&CMatrix3::zeros(),
)?;
Ok(Self { data })
}
/// Create a cold configuration ( where the link matrices is set to the identity).
///
/// # Example
/// ```
/// use lattice_qcd_rs::{field::LinkMatrix, lattice::LatticeCyclic};
/// # use std::error::Error;
///
/// # fn main() -> Result<(), Box<dyn Error>> {
/// let lattice = LatticeCyclic::<3>::new(1_f64, 4)?;
/// let links = LinkMatrix::new_cold(&lattice);
/// assert!(!links.is_empty());
/// # Ok(())
/// # }
/// ```
pub fn new_cold<const D: usize>(l: &LatticeCyclic<D>) -> Self {
Self {
data: vec![CMatrix3::identity(); l.number_of_canonical_links_space()],
}
}
/// get the link matrix associated to given link using the notation
/// $`U_{-i}(x) = U^\dagger_{i}(x-i)`$
pub fn matrix<const D: usize>(
&self,
link: &LatticeLink<D>,
l: &LatticeCyclic<D>,
) -> Option<Matrix3<na::Complex<Real>>> {
let link_c = l.into_canonical(*link);
let matrix = self.data.get(link_c.to_index(l))?;
if link.is_dir_negative() {
// that means the the link was in the negative direction
Some(matrix.adjoint())
}
else {
Some(*matrix)
}
}
/// Get $`S_ij(x) = U_j(x) U_i(x+j) U^\dagger_j(x+i)`$.
pub fn sij<const D: usize>(
&self,
point: &LatticePoint<D>,
dir_i: &Direction<D>,
dir_j: &Direction<D>,
lattice: &LatticeCyclic<D>,
) -> Option<Matrix3<na::Complex<Real>>> {
let u_j = self.matrix(&LatticeLink::new(*point, *dir_j), lattice)?;
let point_pj = lattice.add_point_direction(*point, dir_j);
let u_i_p_j = self.matrix(&LatticeLink::new(point_pj, *dir_i), lattice)?;
let point_pi = lattice.add_point_direction(*point, dir_i);
let u_j_pi_d = self
.matrix(&LatticeLink::new(point_pi, *dir_j), lattice)?
.adjoint();
Some(u_j * u_i_p_j * u_j_pi_d)
}
/// Get the plaquette $`P_{ij}(x) = U_i(x) S^\dagger_ij(x)`$.
pub fn pij<const D: usize>(
&self,
point: &LatticePoint<D>,
dir_i: &Direction<D>,
dir_j: &Direction<D>,
lattice: &LatticeCyclic<D>,
) -> Option<Matrix3<na::Complex<Real>>> {
let s_ij = self.sij(point, dir_i, dir_j, lattice)?;
let u_i = self.matrix(&LatticeLink::new(*point, *dir_i), lattice)?;
Some(u_i * s_ij.adjoint())
}
/// Take the average of the trace of all plaquettes
#[allow(clippy::as_conversions)] // no try into for f64
pub fn average_trace_plaquette<const D: usize>(
&self,
lattice: &LatticeCyclic<D>,
) -> Option<na::Complex<Real>> {
if lattice.number_of_canonical_links_space() != self.len() {
return None;
}
// the order does not matter as we sum
let sum = lattice
.get_points()
.par_bridge()
.map(|point| {
Direction::positive_directions()
.iter()
.map(|dir_i| {
Direction::positive_directions()
.iter()
.filter(|dir_j| dir_i.index() < dir_j.index())
.map(|dir_j| {
self.pij(&point, dir_i, dir_j, lattice).map(|el| el.trace())
})
.sum::<Option<na::Complex<Real>>>()
})
.sum::<Option<na::Complex<Real>>>()
})
.sum::<Option<na::Complex<Real>>>()?;
let number_of_directions = (D * (D - 1)) / 2;
let number_of_plaquette = (lattice.number_of_points() * number_of_directions) as f64;
Some(sum / number_of_plaquette)
}
/// Get the clover, used for F_mu_nu tensor
pub fn clover<const D: usize>(
&self,
point: &LatticePoint<D>,
dir_i: &Direction<D>,
dir_j: &Direction<D>,
lattice: &LatticeCyclic<D>,
) -> Option<CMatrix3> {
Some(
self.pij(point, dir_i, dir_j, lattice)?
+ self.pij(point, dir_j, &-dir_i, lattice)?
+ self.pij(point, &-dir_i, &-dir_j, lattice)?
+ self.pij(point, &-dir_j, dir_i, lattice)?,
)
}
/// Get the `F^{ij}` tensor using the clover appropriation. The direction should be set to positive.
/// See <https://arxiv.org/abs/1512.02374>.
// TODO negative directions
pub fn f_mu_nu<const D: usize>(
&self,
point: &LatticePoint<D>,
dir_i: &Direction<D>,
dir_j: &Direction<D>,
lattice: &LatticeCyclic<D>,
) -> Option<CMatrix3> {
let m = self.clover(point, dir_i, dir_j, lattice)?
- self.clover(point, dir_j, dir_i, lattice)?;
Some(m / Complex::from(8_f64 * lattice.size() * lattice.size()))
}
/// Get the chromomagnetic field at a given point.
pub fn magnetic_field_vec<const D: usize>(
&self,
point: &LatticePoint<D>,
lattice: &LatticeCyclic<D>,
) -> Option<SVector<CMatrix3, D>> {
let mut vec = SVector::<CMatrix3, D>::zeros();
for dir in &Direction::<D>::positive_directions() {
vec[dir.index()] = self.magnetic_field(point, dir, lattice)?;
}
Some(vec)
}
/// Get the chromomagnetic field at a given point alongside a given direction.
pub fn magnetic_field<const D: usize>(
&self,
point: &LatticePoint<D>,
dir: &Direction<D>,
lattice: &LatticeCyclic<D>,
) -> Option<CMatrix3> {
let sum = Direction::<D>::positive_directions()
.iter()
.map(|dir_i| {
Direction::<D>::positive_directions()
.iter()
.map(|dir_j| {
let f_mn = self.f_mu_nu(point, dir_i, dir_j, lattice)?;
let lc = Complex::from(
levi_civita(&[dir.index(), dir_i.index(), dir_j.index()]).to_f64(),
);
Some(f_mn * lc)
})
.sum::<Option<CMatrix3>>()
})
.sum::<Option<CMatrix3>>()?;
Some(sum / Complex::new(0_f64, 2_f64))
}
/// Get the chromomagnetic field at a given point alongside a given direction given by lattice link.
pub fn magnetic_field_link<const D: usize>(
&self,
link: &LatticeLink<D>,
lattice: &LatticeCyclic<D>,
) -> Option<Matrix3<na::Complex<Real>>> {
self.magnetic_field(link.pos(), link.dir(), lattice)
}
/// Return the number of elements.
pub fn len(&self) -> usize {
self.data.len()
}
/// Returns wether the there is no data.
pub fn is_empty(&self) -> bool {
self.data.is_empty()
}
/// Correct the numerical drift, reprojecting all the matrices to SU(3).
///
/// You can look at the example of [`super::simulation::LatticeStateDefault::normalize_link_matrices`]
pub fn normalize(&mut self) {
self.data.par_iter_mut().for_each(|el| {
su3::orthonormalize_matrix_mut(el);
});
}
/// Iter on the data.
pub fn iter(&self) -> impl Iterator<Item = &CMatrix3> + ExactSizeIterator + FusedIterator {
self.data.iter()
}
/// Iter mutably on the data.
pub fn iter_mut(
&mut self,
) -> impl Iterator<Item = &mut CMatrix3> + ExactSizeIterator + FusedIterator {
self.data.iter_mut()
}
}
impl AsRef<Vec<CMatrix3>> for LinkMatrix {
fn as_ref(&self) -> &Vec<CMatrix3> {
self.as_vec()
}
}
impl AsMut<Vec<CMatrix3>> for LinkMatrix {
fn as_mut(&mut self) -> &mut Vec<CMatrix3> {
self.as_vec_mut()
}
}
impl AsRef<[CMatrix3]> for LinkMatrix {
fn as_ref(&self) -> &[CMatrix3] {
self.as_slice()
}
}
impl AsMut<[CMatrix3]> for LinkMatrix {
fn as_mut(&mut self) -> &mut [CMatrix3] {
self.as_slice_mut()
}
}
impl<'a> IntoIterator for &'a LinkMatrix {
type IntoIter = <&'a Vec<CMatrix3> as IntoIterator>::IntoIter;
type Item = &'a CMatrix3;
fn into_iter(self) -> Self::IntoIter {
self.data.iter()
}
}
impl<'a> IntoIterator for &'a mut LinkMatrix {
type IntoIter = <&'a mut Vec<CMatrix3> as IntoIterator>::IntoIter;
type Item = &'a mut CMatrix3;
fn into_iter(self) -> Self::IntoIter {
self.data.iter_mut()
}
}
impl Index<usize> for LinkMatrix {
type Output = CMatrix3;
fn index(&self, pos: usize) -> &Self::Output {
&self.data[pos]
}
}
impl IndexMut<usize> for LinkMatrix {
fn index_mut(&mut self, pos: usize) -> &mut Self::Output {
&mut self.data[pos]
}
}
impl<A> FromIterator<A> for LinkMatrix
where
Vec<CMatrix3>: FromIterator<A>,
{
fn from_iter<T>(iter: T) -> Self
where
T: IntoIterator<Item = A>,
{
Self::new(Vec::from_iter(iter))
}
}
impl<A> FromParallelIterator<A> for LinkMatrix
where
Vec<CMatrix3>: FromParallelIterator<A>,
A: Send,
{
fn from_par_iter<I>(par_iter: I) -> Self
where
I: IntoParallelIterator<Item = A>,
{
Self::new(Vec::from_par_iter(par_iter))
}
}
impl<T> ParallelExtend<T> for LinkMatrix
where
Vec<CMatrix3>: ParallelExtend<T>,
T: Send,
{
fn par_extend<I>(&mut self, par_iter: I)
where
I: IntoParallelIterator<Item = T>,
{
self.data.par_extend(par_iter);
}
}
impl<A> Extend<A> for LinkMatrix
where
Vec<CMatrix3>: Extend<A>,
{
fn extend<T>(&mut self, iter: T)
where
T: IntoIterator<Item = A>,
{
self.data.extend(iter);
}
}
/// Represent an electric field.
#[derive(Debug, PartialEq, Clone)]
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
pub struct EField<const D: usize> {
data: Vec<SVector<Su3Adjoint, D>>, // use a Vec<[Su3Adjoint; D]> instead ?
}
impl<const D: usize> EField<D> {
/// Create a new "Electrical" field.
pub fn new(data: Vec<SVector<Su3Adjoint, D>>) -> Self {
Self { data }
}
/// Get the raw data.
pub const fn data(&self) -> &Vec<SVector<Su3Adjoint, D>> {
&self.data
}
/// Get a mut ref to the data data.
pub fn data_mut(&mut self) -> &mut Vec<SVector<Su3Adjoint, D>> {
&mut self.data
}
/// Get the e_field as a Vec of Vector of [`Su3Adjoint`]
pub const fn as_vec(&self) -> &Vec<SVector<Su3Adjoint, D>> {
self.data()
}
/// Get the e_field as a slice of Vector of [`Su3Adjoint`]
pub fn as_slice(&self) -> &[SVector<Su3Adjoint, D>] {
&self.data
}
/// Get the e_field as mut ref to slice of Vector of [`Su3Adjoint`]
pub fn as_slice_mut(&mut self) -> &mut [SVector<Su3Adjoint, D>] {
&mut self.data
}
/// Return the number of elements.
pub fn len(&self) -> usize {
self.data.len()
}
/// Single threaded generation with a given random number generator.
/// useful to reproduce a set of data.
///
/// # Example
/// ```
/// # use lattice_qcd_rs::{field::EField, lattice::LatticeCyclic};
/// # fn main () -> Result<(), Box<dyn std::error::Error>> {
/// use rand::{rngs::StdRng, SeedableRng};
///
/// let mut rng_1 = StdRng::seed_from_u64(0);
/// let mut rng_2 = StdRng::seed_from_u64(0);
/// // They have the same seed and should generate the same numbers
/// let distribution = rand::distributions::Uniform::from(-1_f64..1_f64);
/// let lattice = LatticeCyclic::<4>::new(1_f64, 4)?;
/// assert_eq!(
/// EField::new_determinist(&lattice, &mut rng_1, &distribution),
/// EField::new_determinist(&lattice, &mut rng_2, &distribution)
/// );
/// # Ok(())
/// # }
/// ```
pub fn new_determinist<Rng: rand::Rng + ?Sized>(
l: &LatticeCyclic<D>,
rng: &mut Rng,
d: &impl rand_distr::Distribution<Real>,
) -> Self {
let mut data = Vec::with_capacity(l.number_of_points());
for _ in l.get_points() {
// iterator *should* be ordered
data.push(SVector::<Su3Adjoint, D>::from_fn(|_, _| {
Su3Adjoint::random(rng, d)
}));
}
Self { data }
}
/// Single thread generation by seeding a new rng number.
/// To create a seedable and reproducible set use [`EField::new_determinist`].
///
/// # Example
/// ```
/// use lattice_qcd_rs::{field::EField, lattice::LatticeCyclic};
/// # use std::error::Error;
///
/// # fn main() -> Result<(), Box<dyn Error>> {
/// let distribution = rand::distributions::Uniform::from(-1_f64..1_f64);
/// let lattice = LatticeCyclic::<3>::new(1_f64, 4)?;
/// let e_field = EField::new_random(&lattice, &distribution);
/// assert!(!e_field.is_empty());
/// # Ok(())
/// # }
/// ```
pub fn new_random(l: &LatticeCyclic<D>, d: &impl rand_distr::Distribution<Real>) -> Self {
let mut rng = rand::thread_rng();
EField::new_determinist(l, &mut rng, d)
}
/// Create a new cold configuration for the electrical field, i.e. all E ar set to 0.
///
/// # Example
/// ```
/// use lattice_qcd_rs::{field::EField, lattice::LatticeCyclic};
/// # use std::error::Error;
///
/// # fn main() -> Result<(), Box<dyn Error>> {
/// let lattice = LatticeCyclic::<3>::new(1_f64, 4)?;
/// let e_field = EField::new_cold(&lattice);
/// assert!(!e_field.is_empty());
/// # Ok(())
/// # }
/// ```
pub fn new_cold(l: &LatticeCyclic<D>) -> Self {
let p1 = Su3Adjoint::new_from_array([0_f64; 8]);
Self {
data: vec![SVector::<Su3Adjoint, D>::from_element(p1); l.number_of_points()],
}
}
/// Get `E(point) = [E_x(point), E_y(point), E_z(point)]`.
pub fn e_vec(
&self,
point: &LatticePoint<D>,
l: &LatticeCyclic<D>,
) -> Option<&SVector<Su3Adjoint, D>> {
self.data.get(point.to_index(l))
}
/// Get `E_{dir}(point)`. The sign of the direction does not change the output. i.e.
/// `E_{-dir}(point) = E_{dir}(point)`.
pub fn e_field(
&self,
point: &LatticePoint<D>,
dir: &Direction<D>,
l: &LatticeCyclic<D>,
) -> Option<&Su3Adjoint> {
let value = self.e_vec(point, l);
match value {
Some(vec) => vec.get(dir.index()),
None => None,
}
}
/// Returns wether there is no data
pub fn is_empty(&self) -> bool {
self.data.is_empty()
}
/// Return the Gauss parameter `G(x) = \sum_i E_i(x) - U_{-i}(x) E_i(x - i) U^\dagger_{-i}(x)`.
#[inline]
pub fn gauss(
&self,
link_matrix: &LinkMatrix,
point: &LatticePoint<D>,
lattice: &LatticeCyclic<D>,
) -> Option<CMatrix3> {
if lattice.number_of_points() != self.len()
|| lattice.number_of_canonical_links_space() != link_matrix.len()
{
return None;
}
Direction::positive_directions()
.iter()
.map(|dir| {
let e_i = self.e_field(point, dir, lattice)?;
let u_mi = link_matrix.matrix(&LatticeLink::new(*point, -*dir), lattice)?;
let p_mi = lattice.add_point_direction(*point, &-dir);
let e_m_i = self.e_field(&p_mi, dir, lattice)?;
Some(e_i.to_matrix() - u_mi * e_m_i.to_matrix() * u_mi.adjoint())
})
.sum::<Option<CMatrix3>>()
}
/// Get the deviation from the Gauss law
#[inline]
pub fn gauss_sum_div(
&self,
link_matrix: &LinkMatrix,
lattice: &LatticeCyclic<D>,
) -> Option<Real> {
if lattice.number_of_points() != self.len()
|| lattice.number_of_canonical_links_space() != link_matrix.len()
{
return None;
}
lattice
.get_points()
.par_bridge()
.map(|point| {
self.gauss(link_matrix, &point, lattice).map(|el| {
(su3::GENERATORS.iter().copied().sum::<CMatrix3>() * el)
.trace()
.abs()
})
})
.sum::<Option<Real>>()
}
/// project to that the gauss law is approximately respected ( up to `f64::EPSILON * 10` per point).
///
/// It is mainly use internally but can be use to correct numerical drift in simulations.
///
/// # Example
/// ```
/// use lattice_qcd_rs::error::ImplementationError;
/// use lattice_qcd_rs::integrator::SymplecticEulerRayon;
/// use lattice_qcd_rs::simulation::{
/// LatticeState, LatticeStateDefault, LatticeStateEFSyncDefault, LatticeStateWithEField,
/// SimulationStateSynchronous,
/// };
/// use rand::SeedableRng;
///
/// # use std::error::Error;
/// #
/// # fn main() -> Result<(), Box<dyn Error>> {
/// let mut rng = rand::rngs::StdRng::seed_from_u64(0); // change with your seed
/// let distribution =
/// rand::distributions::Uniform::from(-std::f64::consts::PI..std::f64::consts::PI);
/// let mut state = LatticeStateEFSyncDefault::new_random_e_state(
/// LatticeStateDefault::<3>::new_determinist(1_f64, 6_f64, 4, &mut rng)?,
/// &mut rng,
/// ); // <- here internally when choosing randomly the EField it is projected.
///
/// let integrator = SymplecticEulerRayon::default();
/// for _ in 0..2 {
/// for _ in 0..10 {
/// state = state.simulate_sync(&integrator, 0.0001_f64)?;
/// }
/// // we correct the numerical drift of the EField.
/// let new_e_field = state
/// .e_field()
/// .project_to_gauss(state.link_matrix(), state.lattice())
/// .ok_or(ImplementationError::OptionWithUnexpectedNone)?;
/// state.set_e_field(new_e_field);
/// }
/// #
/// # Ok(())
/// # }
/// ```
#[allow(clippy::as_conversions)] // no try into for f64
#[inline]
pub fn project_to_gauss(
&self,
link_matrix: &LinkMatrix,
lattice: &LatticeCyclic<D>,
) -> Option<Self> {
// TODO improve
const NUMBER_FOR_LOOP: usize = 4;
if lattice.number_of_points() != self.len()
|| lattice.number_of_canonical_links_space() != link_matrix.len()
{
return None;
}
let mut return_val = self.project_to_gauss_step(link_matrix, lattice);
loop {
let val_dif = return_val.gauss_sum_div(link_matrix, lattice)?;
//println!("diff : {}", val_dif);
if val_dif.is_nan() {
return None;
}
if val_dif <= f64::EPSILON * (lattice.number_of_points() * 4 * 8 * 10) as f64 {
break;
}
for _ in 0_usize..NUMBER_FOR_LOOP {
return_val = return_val.project_to_gauss_step(link_matrix, lattice);
//println!("{}", return_val[0][0][0]);
}
}
Some(return_val)
}
/// Done one step to project to gauss law.
///
/// # Panic
/// panics if the link matrix and lattice is not of the correct size.
#[inline]
fn project_to_gauss_step(&self, link_matrix: &LinkMatrix, lattice: &LatticeCyclic<D>) -> Self {
/// see <https://arxiv.org/pdf/1512.02374.pdf>
// TODO verify
const K: na::Complex<f64> = na::Complex::new(0.12_f64, 0_f64);
let data = lattice
.get_points()
.collect::<Vec<LatticePoint<D>>>()
.par_iter()
.map(|point| {
let e = self.e_vec(point, lattice).unwrap();
SVector::<_, D>::from_fn(|index_dir, _| {
let dir = Direction::<D>::positive_directions()[index_dir];
let u = link_matrix
.matrix(&LatticeLink::new(*point, dir), lattice)
.unwrap();
let gauss = self.gauss(link_matrix, point, lattice).unwrap();
let gauss_p = self
.gauss(
link_matrix,
&lattice.add_point_direction(*point, &dir),
lattice,
)
.unwrap();
Su3Adjoint::new(Vector8::from_fn(|index, _| {
2_f64
* (su3::GENERATORS[index]
* ((u * gauss * u.adjoint() * gauss_p - gauss) * K
+ su3::GENERATORS[index]
* na::Complex::from(e[dir.index()][index])))
.trace()
.real()
}))
})
})
.collect();
Self::new(data)
}
}
impl<const D: usize> AsRef<Vec<SVector<Su3Adjoint, D>>> for EField<D> {
fn as_ref(&self) -> &Vec<SVector<Su3Adjoint, D>> {
self.as_vec()
}
}
impl<const D: usize> AsMut<Vec<SVector<Su3Adjoint, D>>> for EField<D> {
fn as_mut(&mut self) -> &mut Vec<SVector<Su3Adjoint, D>> {
self.data_mut()
}
}
impl<const D: usize> AsRef<[SVector<Su3Adjoint, D>]> for EField<D> {
fn as_ref(&self) -> &[SVector<Su3Adjoint, D>] {
self.as_slice()
}
}
impl<const D: usize> AsMut<[SVector<Su3Adjoint, D>]> for EField<D> {
fn as_mut(&mut self) -> &mut [SVector<Su3Adjoint, D>] {
self.as_slice_mut()
}
}
impl<'a, const D: usize> IntoIterator for &'a EField<D> {
type IntoIter = <&'a Vec<SVector<Su3Adjoint, D>> as IntoIterator>::IntoIter;
type Item = &'a SVector<Su3Adjoint, D>;
fn into_iter(self) -> Self::IntoIter {
self.data.iter()
}
}
impl<'a, const D: usize> IntoIterator for &'a mut EField<D> {
type IntoIter = <&'a mut Vec<SVector<Su3Adjoint, D>> as IntoIterator>::IntoIter;
type Item = &'a mut SVector<Su3Adjoint, D>;
fn into_iter(self) -> Self::IntoIter {
self.data.iter_mut()
}
}
impl<const D: usize> Index<usize> for EField<D> {
type Output = SVector<Su3Adjoint, D>;
fn index(&self, pos: usize) -> &Self::Output {
&self.data[pos]
}
}
impl<const D: usize> IndexMut<usize> for EField<D> {
fn index_mut(&mut self, pos: usize) -> &mut Self::Output {
&mut self.data[pos]
}
}
impl<A, const D: usize> FromIterator<A> for EField<D>
where
Vec<SVector<Su3Adjoint, D>>: FromIterator<A>,
{
fn from_iter<T>(iter: T) -> Self
where
T: IntoIterator<Item = A>,
{
Self::new(Vec::from_iter(iter))
}
}
impl<A, const D: usize> FromParallelIterator<A> for EField<D>
where
Vec<SVector<Su3Adjoint, D>>: FromParallelIterator<A>,
A: Send,
{
fn from_par_iter<I>(par_iter: I) -> Self
where
I: IntoParallelIterator<Item = A>,
{
Self::new(Vec::from_par_iter(par_iter))
}
}
impl<T, const D: usize> ParallelExtend<T> for EField<D>
where
Vec<SVector<Su3Adjoint, D>>: ParallelExtend<T>,
T: Send,
{
fn par_extend<I>(&mut self, par_iter: I)
where
I: IntoParallelIterator<Item = T>,
{
self.data.par_extend(par_iter);
}
}
impl<A, const D: usize> Extend<A> for EField<D>
where
Vec<SVector<Su3Adjoint, D>>: Extend<A>,
{
fn extend<T>(&mut self, iter: T)
where
T: IntoIterator<Item = A>,
{
self.data.extend(iter);
}
}
#[cfg(test)]
mod test {
use approx::*;
use rand::SeedableRng;
use super::super::{lattice::*, Complex};
use super::*;
const EPSILON: f64 = 0.000_000_001_f64;
const SEED_RNG: u64 = 0x45_78_93_f4_4a_b0_67_f0;
#[test]
fn test_get_e_field_pos_neg() {
use super::super::lattice;
let l = LatticeCyclic::new(1_f64, 4).unwrap();
let e = EField::new(vec![SVector::<_, 4>::from([
Su3Adjoint::from([1_f64; 8]),
Su3Adjoint::from([2_f64; 8]),
Su3Adjoint::from([3_f64; 8]),
Su3Adjoint::from([2_f64; 8]),
])]);
assert_eq!(
e.e_field(
&LatticePoint::new([0, 0, 0, 0].into()),
&lattice::DirectionEnum::XPos.into(),
&l
),
e.e_field(
&LatticePoint::new([0, 0, 0, 0].into()),
&lattice::DirectionEnum::XNeg.into(),
&l
)
);
}
#[test]
#[allow(clippy::eq_op)]
#[allow(clippy::op_ref)]
fn test_su3_adj() {
let mut rng = rand::rngs::StdRng::seed_from_u64(SEED_RNG);
let d = rand::distributions::Uniform::from(-1_f64..1_f64);
for _ in 0_u32..100_u32 {
let v = Su3Adjoint::random(&mut rng, &d);
let m = v.to_matrix();
assert_abs_diff_eq!(
v.trace_squared(),
(m * m).trace().modulus(),
epsilon = EPSILON
);
assert_eq_complex!(
v.d(),
nalgebra::Complex::new(0_f64, 1_f64) * m.determinant(),
EPSILON
);
assert_eq_complex!(v.t(), -(m * m).trace() / Complex::from(2_f64), EPSILON);
// ----
let adj_1 = Su3Adjoint::default();
let adj_2 = Su3Adjoint::new_from_array([1_f64; 8]);
assert_eq!(adj_2, adj_2 + adj_1);
assert_eq!(adj_2, &adj_2 + &adj_1);
assert_eq!(adj_2, &adj_2 - &adj_1);
assert_eq!(adj_1, &adj_2 - &adj_2);
assert_eq!(adj_1, &adj_2 - adj_2);
assert_eq!(adj_1, adj_2 - &adj_2);
assert_eq!(adj_1, -&adj_1);
let adj_3 = Su3Adjoint::new_from_array([2_f64; 8]);
assert_eq!(adj_3, &adj_2 + &adj_2);
assert_eq!(adj_3, &adj_2 * &2_f64);
assert_eq!(adj_3, &2_f64 * &adj_2);
assert_eq!(adj_3, 2_f64 * adj_2);
assert_eq!(adj_3, &2_f64 * adj_2);
assert_eq!(adj_3, 2_f64 * &adj_2);
assert_eq!(adj_2, &adj_3 / &2_f64);
assert_eq!(adj_2, &adj_3 / 2_f64);
let mut adj_5 = Su3Adjoint::new_from_array([2_f64; 8]);
adj_5 /= &2_f64;
assert_eq!(adj_2, adj_5);
let adj_4 = Su3Adjoint::new_from_array([-1_f64; 8]);
assert_eq!(adj_2, -adj_4);
}
use crate::su3::su3_exp_r;
let mut rng = rand::rngs::StdRng::seed_from_u64(SEED_RNG);
let d = rand::distributions::Uniform::from(-1_f64..1_f64);
for _ in 0_u32..10_u32 {
let v = Su3Adjoint::random(&mut rng, &d);
assert_eq!(su3_exp_r(v), v.exp());
}
}
#[test]
fn link_matrix() {
let lattice = LatticeCyclic::<3>::new(1_f64, 4).unwrap();
match LinkMatrix::new_random_threaded(&lattice, 0) {
Err(ThreadError::ThreadNumberIncorrect) => {}
_ => panic!("unexpected output"),
}
let link_s = LinkMatrix::new_random_threaded(&lattice, 2);
assert!(link_s.is_ok());
let mut link = link_s.unwrap();
assert!(!link.is_empty());
let l2 = LinkMatrix::new(vec![]);
assert!(l2.is_empty());
let _: &[_] = link.as_ref();
let _: &Vec<_> = link.as_ref();
let _: &mut [_] = link.as_mut();
let _: &mut Vec<_> = link.as_mut();
let _ = link.iter();
let _ = link.iter_mut();
let _ = (&link).into_iter();
let _ = (&mut link).into_iter();
}
#[test]
fn e_field() {
let lattice = LatticeCyclic::<3>::new(1_f64, 4).unwrap();
let e_field_s = LinkMatrix::new_random_threaded(&lattice, 2);
assert!(e_field_s.is_ok());
let mut e_field = e_field_s.unwrap();
let _: &[_] = e_field.as_ref();
let _: &Vec<_> = e_field.as_ref();
let _: &mut [_] = e_field.as_mut();
let _: &mut Vec<_> = e_field.as_mut();
let _ = e_field.iter();
let _ = e_field.iter_mut();
let _ = (&e_field).into_iter();
let _ = (&mut e_field).into_iter();
}
#[test]
fn magnetic_field() {
let lattice = LatticeCyclic::<3>::new(1_f64, 4).unwrap();
let mut link_matrix = LinkMatrix::new_cold(&lattice);
let point = LatticePoint::from([0, 0, 0]);
let dir_x = Direction::new(0, true).unwrap();
let dir_y = Direction::new(1, true).unwrap();
let dir_z = Direction::new(2, true).unwrap();
let clover = link_matrix
.clover(&point, &dir_x, &dir_y, &lattice)
.unwrap();
assert_eq_matrix!(CMatrix3::identity() * Complex::from(4_f64), clover, EPSILON);
let f = link_matrix
.f_mu_nu(&point, &dir_x, &dir_y, &lattice)
.unwrap();
assert_eq_matrix!(CMatrix3::zeros(), f, EPSILON);
let b = link_matrix
.magnetic_field(&point, &dir_x, &lattice)
.unwrap();
assert_eq_matrix!(CMatrix3::zeros(), b, EPSILON);
let b_vec = link_matrix.magnetic_field_vec(&point, &lattice).unwrap();
for i in &b_vec {
assert_eq_matrix!(CMatrix3::zeros(), i, EPSILON);
}
// ---
link_matrix[0] = CMatrix3::identity() * Complex::new(0_f64, 1_f64);
let clover = link_matrix
.clover(&point, &dir_x, &dir_y, &lattice)
.unwrap();
assert_eq_matrix!(
CMatrix3::identity() * Complex::new(2_f64, 0_f64),
clover,
EPSILON
);
let clover = link_matrix
.clover(&point, &dir_y, &dir_x, &lattice)
.unwrap();
assert_eq_matrix!(
CMatrix3::identity() * Complex::new(2_f64, 0_f64),
clover,
EPSILON
);
let f = link_matrix
.f_mu_nu(&point, &dir_x, &dir_y, &lattice)
.unwrap();
assert_eq_matrix!(
CMatrix3::identity() * Complex::new(0_f64, 0_f64),
f,
EPSILON
);
let b = link_matrix
.magnetic_field(&point, &dir_x, &lattice)
.unwrap();
assert_eq_matrix!(CMatrix3::zeros(), b, EPSILON);
let b_vec = link_matrix.magnetic_field_vec(&point, &lattice).unwrap();
for i in &b_vec {
assert_eq_matrix!(CMatrix3::zeros(), i, EPSILON);
}
assert_eq_matrix!(
link_matrix
.magnetic_field_link(&LatticeLink::new(point, dir_x), &lattice)
.unwrap(),
b,
EPSILON
);
//--
let mut link_matrix = LinkMatrix::new_cold(&lattice);
let link = LatticeLinkCanonical::new([1, 0, 0].into(), dir_y).unwrap();
link_matrix[link.to_index(&lattice)] = CMatrix3::identity() * Complex::new(0_f64, 1_f64);
let clover = link_matrix
.clover(&point, &dir_x, &dir_y, &lattice)
.unwrap();
assert_eq_matrix!(
CMatrix3::identity() * Complex::new(3_f64, 1_f64),
clover,
EPSILON
);
let clover = link_matrix
.clover(&point, &dir_y, &dir_x, &lattice)
.unwrap();
assert_eq_matrix!(
CMatrix3::identity() * Complex::new(3_f64, -1_f64),
clover,
EPSILON
);
let f = link_matrix
.f_mu_nu(&point, &dir_x, &dir_y, &lattice)
.unwrap();
assert_eq_matrix!(
CMatrix3::identity() * Complex::new(0_f64, 0.25_f64),
f,
EPSILON
);
let b = link_matrix
.magnetic_field(&point, &dir_x, &lattice)
.unwrap();
assert_eq_matrix!(CMatrix3::zeros(), b, EPSILON);
assert_eq_matrix!(
link_matrix
.magnetic_field_link(&LatticeLink::new(point, dir_x), &lattice)
.unwrap(),
b,
EPSILON
);
let b = link_matrix
.magnetic_field(&point, &dir_z, &lattice)
.unwrap();
assert_eq_matrix!(
link_matrix
.magnetic_field_link(&LatticeLink::new(point, dir_z), &lattice)
.unwrap(),
b,
EPSILON
);
assert_eq_matrix!(
CMatrix3::identity() * Complex::new(0.25_f64, 0_f64),
b,
EPSILON
);
let b_2 = link_matrix
.magnetic_field(&[4, 0, 0].into(), &dir_z, &lattice)
.unwrap();
assert_eq_matrix!(b, b_2, EPSILON);
let b_vec = link_matrix.magnetic_field_vec(&point, &lattice).unwrap();
for (index, m) in b_vec.iter().enumerate() {
if index == 2 {
assert_eq_matrix!(m, b, EPSILON);
}
else {
assert_eq_matrix!(CMatrix3::zeros(), m, EPSILON);
}
}
}
#[test]
fn test_len() {
let su3 = Su3Adjoint::new(nalgebra::SVector::<f64, 8>::zeros());
assert_eq!(Su3Adjoint::len_const(), su3.len());
}
}